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Abstract— In this work we apply a systems-theoretic ap-
proach to identifying trend setters on Twitter. A network recon-
struction algorithm was applied to Twitter data to determine
causal relationships among topics discussed by popular Twitter
users. Causal relationships in this context means that the topics
tweeted by a single user influences the topics tweeted by another
user, regardless of sentiment. A user that causally influences
other users, without themselves being strongly influenced is
identified as a trendsetter. This work seeks to identify potential
trendsetters among popular Twitter users and demonstrating
that causal influence does not always directly correlate with a
user’s popularity in terms of followers–demonstrating that pop-
ularity alone may not be sufficient for identifying trendsetters
on Twitter.

Twitter is a popular online social networking site that
allows users to communicate both publicly and privately
using short messages–known as tweets–with a 140-character
limit. Twitter has become an important platform to study due
to its substantial growth over the last decade, with over 300
million users in 2016, an order of magnitude increase since
2010, and over 500 million tweets recorded daily [1].

Twitter users, like many social media sites, form relation-
ships in several ways:

1) Follower: Twitter can be described by a directed graph
detailing which users are subscribed to follow tweets
from other users. Each user has a personalized feed
where tweets from users they have followed appear.
This relationship appears useful for detailing influence
of Twitter users since it details the number of users
who are likely to read their tweets. Researchers, how-
ever, have discovered that using high follower count
alone to detail influence is a weak assumption and
other important Twitter relationships need to be taken
into account in order to define influence [2].

2) Mentions: Mention relationships occur when a Twitter
user, which we will call User A, includes the user
handle (i.e. their username, including the @ tag so
that it links back to the user) of another Twitter user,
which we will call User B. This indicates that User A
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is trying to contact User B, is talking about User B,
or is responding to User B. This is a good metric for
influence since it means many people are discussing
User B or in discussions with User B. However, this
can be potentially be abused by smaller groups of users
continually tweeting mentions of each other, something
Twitter tries to minimize through its acceptable use
policies by limiting multiple accounts by users, etc. [3].

3) Retweets: Whenever User A retweets a tweet from
User B, the followers of User A views User B’s tweet
on their feeds. This means the tweets of User B, i.e.
their ideas, are potentially propagated to a new set of
users.

4) Hashtags: Hashtags are words that begin with the #
symbol and are used to highlight the topic of their
tweet. Common hashtags among multiple users means
those users are tweeting about the same topic, even
though they might not be directly related by any of
the previous three relationships.

Many companies–such as Klout, PeerIndex, and Kred–
have tried to numerically assign an influence score for users
based on some combination of the above metrics. These
companies are all websites that aggregate a user’s online
activity on popular social media sites, such as Twitter, to
score their influence.

Many researchers have also studied influence and informa-
tion propagation among Twitter users with approaches such
as:

1) Applying clustering algorithms to graphs created by
follower relationships [4]

2) Using a combination of the follower, mention, and
retweet metrics, while taking into account the user’s
total number of tweets [5]

3) Tracking the progress of a single topic among follow-
ers and followers of followers [6]

4) Using statistical methods to determine information
propagation based on human-labeled tweets [7]

While these research approaches and software solutions
help model the propagation and magnitude of social influ-
ence, they may not shed adequate light on the agent that
originally triggered the social movement. For example, one
of these existing approaches may conclude that Larry King
initiated a viral social media wave with a specific post,
however, King’s post may have been inspired or triggered
by a less noticeable social media user.

This work is the first, to the best of our knowledge,
to apply systems-theoretic techniques to the problem of



identifying influence among users. We detail a potential
influence network based on the timing in which users discuss
various topics over time and compare the network to follower
metrics to demonstrate similarities and differences between
this new technique and existing metrics.

Our approach differs from other approaches by looking at
how users tweet topics over time, ignoring standard metrics
such as follower, mentions, retweets, and hashtags. Influence
is then determined by finding users who continually discuss
topics before other users adopt the topic. We only look at
the relationships among popular users (20 randomly selected
English-tweeting users from the top 100 users based on
number of followers) to identify trendsetters among a group
of users that are known to be influential by some metric.

Topics are automatically assigned to each user’s tweets
using natural language processing (NLP) techniques. Finding
trends and applying topic modeling to Twitter has been well-
studied in the literature [8], [9] and parts of these procedures
are applied in this work to convert tweets over time into
signals over time.

Section I defines the dynamical structure function, a
mathematical system representation used to detail the causal
relationships among manifest variables. Sections II-A and II-
B walk through the process of turning tweets by users over
time into signals over times by assigning topics to each tweet
using standard natural language processing (NLP) methods.
Section II-C details the network reconstruction procedure
used on the converted Twitter data. Results are presented
in Section III. Finally, conclusions and potential future work
is described in Section IV.

I. BACKGROUND

The dynamical structure function (DSF) is a convenient
way to represent the signal structure of a linear time-invariant
(LTI) system [10], [11], [12]. Note that, throughout this work,
all references to systems are in actuality references to LTI
systems.

Let P(z) be the space of all rational polynomials in terms
of z ∈ C. The DSF of a discrete-time LTI system of m
inputs and p outputs is characterized by the pair (Q(z), P (z))
where P (z) ∈ Pp×m(z) and Q(z) ∈ Pp×p(z), and where all
diagonal entries Qii(z) of Q(z) are constrained to be zero. If
Y (z) and U(z) are the frequency-domain representation of
the outputs and inputs of some system, then the DSF relates
inputs and outputs through the following equation:

Y (z) = Q(z)Y (z) + P (z)U(z), (1)

where entries (often called links or modules) in P (z) define
the direct causal mapping from individual inputs to individual
outputs and entries in Q(z) define the direct causal mapping
from individual outputs to other outputs.

Note that the transfer function matrix G(z) is the black-
box mapping from inputs to outputs given by

Y (z) = G(z)U(z). (2)

By solving for Y (z) in (1) we can define the relationship
between the transfer function and the DSF in the following

equation:
G(z) = (I −Q(z))−1P (z). (3)

The equation in (3) highlights the fact that the DSF is
a left factorization of the transfer function and potentially
contains more structural information about the system than
the transfer function (see [13], [14]). Since DSFs can abstract
away some of the information contained in the transfer
function, a DSF can be reconstructed from input-output
data while only requiring low a priori knowledge about the
system, as opposed to the reconstruction of a state space
representation.

II. METHODOLOGY

The process for determining the causal relationships
among Twitter users is as follows:

1) Collect data from 20 randomly selected popular users
on Twitter.

2) Implement natural language techniques to convert
tweets over time into a signal of numeric values over
time.

3) Use a network reconstruction technique to determine
causal relationships among the selected users, as given
by a DSF.

A. Twitter Data Collection

Twenty users were selected at random from the top one
hundred Twitter users. Twitter’s streaming API was imple-
mented using tweepy, a Python wrapper on the Twitter API.
The users tweets were collected for roughly six weeks,
from early January 2017 to mid-February 2017. During that
period 2,295 tweets were collected, the highest volume user
composed 370 tweets and the lowest volume user composed
23 tweets.

B. Twitter Data Preprocesing Procedure

Once the tweets were collected, the procedure for convert-
ing them to numeric signals was conducted as follows:

1) We combined the tweets of a single user into a single
document.

2) We then tokenized and cleaned the documents by re-
moving urls, stopwords, punctuation, mentions (words
beginning with @), and short words (3 letters or
less). A few custom four letter words were also
removed (with, from, this, have, and that) and the
resulting words were lemmatized using the nltk library
in Python.

3) After cleaning the documents, we used the Hierarchical
Dirichlet Process (HDP), which is a built-in function
in the gensim Python library, to determine topics in
documents. Note that unlike the Latent Dirichlet Allo-
cation (LDA), the HDP does not require the number
of topics to be specified a priori. However, we must
still choose a reasonable threshold for the number of
topics. Gensim details each topic using a list of ten
relevant words. We chose the topics whose relevant
words described a large percentage of the topic.



4) Given the topics, we then applied word2vec (again
through gensim) to the topics as well as the tokenized
tweets in order to convert these tweets into numeric
data. The word2vec model was first trained on all
words in all cleaned tweets before being applied to
the topics.

5) We then compared the similarity of each word in each
tweet to each of the ten relevant words associated with
each topic. We assign each tweet a topic based on the
largest similarity between any word in a tweet and any
relevant word in a topic using the word2vec similarity
function in gensim. The topic label for each tweet was
projected down onto the reals using the 2-norm since
it maintains a notion of distance between each tweet.

6) Given a topic for each tweet, we use 24 hours as our
time step in order to get a signal of vectors over time.
If a person tweeted more than once over the course of
a 24-hour period, we averaged the topic score for each
tweet.

Once the tweets for each user were transformed into
signals over time, or time-series data, we were ready to
apply a network reconstruction algorithm to determine causal
relationships among the users.

C. Network Reconstruction of Twitter Data

A network reconstruction problem takes time-series input-
output data and finds the unique DSF of the form (1) that
best fits the data. This approach is standard in the network
reconstruction literature, using either the DSF or a similar
representation [15], [16], and has been used to recover
biochemical reaction networks from data [17], [18], [19].

In particular, we are seeking to find the unique Q(z) that
best fits the output data Y (z) such that

Y (z) = Q(z)Y (z) + P (z)U(z), (4)

where P (z) and U(z) are unknown. The network recon-
struction algorithm used in this work is derived from that
presented in [20]. The algorithm proceeds as follows:

1) Let Dy ∈ RT×p contain the p measured outputs from
the system at times t = 1, 2, . . . , T . Define y(t)T to
be the t’th row of Dy . In this work, Dy contains the
Twitter data processed as described in Section II-B.

2) Choose some r ≤ T , where r is the estimated point
at which all Qij(t) = 0 for t > r. For this work, we
choose r = T .

3) Construct vector ŷ ∈ Rp(T−1) and matrix L̂ ∈
Rp(T−1)×rp2

such that

ŷ =
[
y(2)T · · · y(2)T · · · y(T )T · · · y(T )T

]T
, (5)

and

L̂ =



y(1)T 0 0 · · · 0 0 0

0
. . . 0 · · · 0

. . . 0
0 0 y(1)T · · · 0 0 0

...
...

y(r)T 0 0 · · · y(1)T 0 0

0
. . . 0 · · · 0

. . . 0
0 0 y(r)T · · · 0 0 y(1)T

...
...

y(T − 1)T 0 0 · · · y(T − r)T 0 0

0
. . . 0 · · · 0

. . . 0
0 0 y(T − 1)T · · · 0 0 y(T − r)T



. (6)

4) Let ~q ∈ Rrp2

be a placeholder for all of the unknown
values in Q(t) (note that, as we are assuming that
Q(t) = 0 for t > r, there are only rp2 of these
unknowns) such that:

~q =
[
~q(1)T · · · ~q(r)T

]T
. (7)

5) Since Q(t) is hollow, we can throw away all entries in
~q(t) corresponding to each Qii(t). Let x̂ ∈ Rr(p2−p)

be the resulting vector. We also need to remove all
columns in L̂ corresponding to the entries removed
from ~q. Let M̂ ∈ Rp(T−1)×r(p2−p) be the resulting
matrix.

6) We can now rewrite (4) as

ŷ = M̂x̂+ e. (8)

We seek to minimize ‖e‖2. We use ordinary least
squares to find a x̂ that best fits this data, or in other
words, we find the ~x that solves the problem

x̂∗ = argmin
x̂
‖e‖2 = argmin

x̂
‖ŷ − M̂x̂‖2. (9)

7) For each link (i, j), extract the items from x̂∗ corre-
sponding to that link into Q̃ij(t).

8) The convolutional model of each link (i, j) is given by

Qij(t) = aqijδ(t,0) +

wqij∑
n=1

bn,qij
(
cn,qij

)t
, (10)

where cn,qij ∈ R, −1 < cn,qij < 1 (since the dynamics
on all links are assumed to be stable), wqij ∈ N is the
number of delays in link (i, j), bn,qij ∈ R, aqij =

−
∑wqij

n=0 bn,qij , and δ(t,0) is the Kronecker delta.
For each link, we fit a model of the form (10) by
choosing the parameters bn,qij and cn,qij to minimize
the error

ε =

r∑
t=0

|Qij(t)− Q̃ij(t)|. (11)

This problem can be solved using a non-convex opti-
mization technique, such as an evolutionary algorithm.
Note that, for tractability, we choose wqi,j = 6 and
bound −20 ≤ bn,qij ≤ 20. The bounds on bn,qij
are rarely reached; nonetheless, it may be possible to
slightly improve the quality of the results by increasing
these bounds or increasing wqi,j .



9) Finally, we build Q(z) from (10) such that

αn,qij = bn,qijcn,qij ,

βn,qij = cn,qij ,

Qij(z) =

wqij∑
n=1

αn,qij

z − βn,qij
. (12)

D. On the Reconstructability of Twitter Networks

The network reconstruction algorithm depends on a few
assumptions of the data and the systems which generate the
data in order to be able to reconstruct a network. We discuss
those assumptions and their applicability to the Twitter data
here.
• Linearity: Network reconstruction as presented in this

work assumes that the dynamics of the underlying
network are linear. However, it is almost guaranteed that
the actual dynamics of the network are nonlinear. There-
fore, in performing a network reconstruction on Twitter
data, we are implicitly assuming that the dynamics are
near enough to linear to be approximated by a linear
network.

• Stability: In order to use the reconstruction algorithm
on Twitter data, we must assume that links in Q(z)
and P (z) are stable, or in other words, that the impulse
responses Q(t) and P (t) converge to zero as t → ∞.
The fact that the impulse responses in Figure 1 tend
towards zero is good evidence that it is safe to make
this assumption.

• Strict Causality: The reconstruction algorithm assumes
that dynamics are strictly causal, meaning that tweets in
the present can only influence other individuals strictly
in the future. Since the Twitter data is captured at
a daily resolution, this implies that tweets must take
a full day to influence the network. This assumption
likely does not hold completely as tweets may affect
other individuals faster than a day. However, we still
will build an approximate network by enforcing strict
causality in the learned dynamics.

• Informativity: Informativity states that M̂ must be
injective in order to reconstruct. The data Dy was rich
enough that it was in the range of M̂ .

• Measurement Precision: The reconstruction algorithm
has been shown to be particularly sensitive to additive
noise on output measurements. We can assume that
there is no noise in the system, as we are capturing
the tweets exactly; however, the function of turning
tweets into numeric signals implies that the network
reconstructed from the resultant data is a network of
that function and not necessarily the original twitter
network.

• Data Quantity: We require a T large enough to ensure
that we don’t overfit the least squares model in (8). We
also need to choose r large enough that the dynamics
of each Qij(t) have time to converge to zero. As
indicated in Figure 1, the impulse responses tend to have
enough time to converge; however, the quality of the

reconstruction may be improved by choosing a larger
r, which is only possible if a larger T is available as
well.

III. RESULTS

The impulse responses of the reconstructed twitter dynam-
ics are shown in Figures 1 and 2. Figure 1 contains a sample
of 3 of the 380 impulse responses Qij(t) reconstructed from
the twitter data. The red dots contain the elements of ~q
which were extracted from ~x in step 7 of the reconstruction
algorithm. Notice how these are converging towards zero as t
increases, indicating that the dynamics of this network really
are stable. Notice also that they have time to converge to zero
within t ≤ r = 34 timesteps, indicating that we have selected
enough data to properly reconstruct the network. The blue
lines in this figure are the convolutional model of the impulse
response, fit from ~q in step 8 of the reconstruction algorithm.

Let M ∈ Rp×p be defined such that mij = ‖Qij(z)‖∞,
meaning M contains the link magnitudes reconstructed in
Q(z). Let N ∈ Rp×p be defined such that nij =

mij

maxk,l mkl
,

or in other words, N contains the relative link magnitudes of
the reconstructed network. Matrix N thus forms a weighted
adjacency matrix, and can be used to plot the reconstructed
network. This plot is shown in Figure 2. Note, nij 6= 0
signifies a link from j to i, the transpose of the typical
adjacency matrix convention.

Note that a non-zero magnitude on a link from person
to person does not necessarily signify a direct influence
of one person on another (though it could). For example,
a non-zero link showing an influence from Justin Bieber
to Donald Trump does indicate that a tweet from Justin
Bieber will cause a reaction from Donald Trump. However,
this does not signify that Justin Bieber’s tweets directly
influence Donald Trump’s tweets. Rather it signifies that
Justin Bieber’s tweets influence his followers that are not
represented in this network, which in turn influence other
followers, and so on in a network chain to Donald Trump
that does not pass through any of the other people in this
network.

Matrix N can also be used to compute the individuals
who are the largest influencers. The influencer score of an
individual is the column sum of N related to that individual,
normalized such that the largest influencer has a score of 1.
Matrix N can also be used to determine who are the most
influenced by others in this network. The influenced score of
an individual is the row sum of N related to that individual,
also normalized. We also compute a trendsetter score as the
ratio of the influencer score to the influenced score, again
normalized.

The top three influencers in this network, as shown in
Figure 3, are
• Larry King
• Kev Adams
• Justin Bieber

The top three influenced, as shown in Figure 3, are
• Larry King



Fig. 1. Sample impulse responses from the reconstruction algorithm applied
to the Twitter data. Red dots are the elements of qij(t) extracted from ~x in
step 7 and the blue line is the convolutional model Qij(t) fit in step 8.

• Stephen Fry
• Justin Bieber

The top three trendsetters, as shown in Figure 3, are
• Tyra Banks
• Cara Delevingne
• Kev Adams
Notice from Figure 3 that in several cases, individuals with

high influencer scores also have large numbers of followers,
and those with high influenced scores tend to also follow
many accounts. For example, if we consider only Tyra Banks,
Joe Rogan, Cameron Dallas, Phillip Schofield, Kat Von D,
and Cara Delevingne, the correlation between the influencer
score and the log of the number of followers is 0.66 and
the correlation between the influenced score and the log of

Fig. 2. The relative magnitude of links, ‖Qij(z)‖∞, reconstructed by the
reconstruction algorithm on the Twitter data. The thickness of each line is
proportional to its magnitude.

the number following is 0.74. Since number of followers
and number following were not included in the dataset used
for reconstruction, this is evidence that the reconstruction
algorithm is functioning as desired.

That said this relationship does not hold in general (the
correlation between influencer score and log of followers is
-0.19 for all individuals in this network, and the correlation
between influenced score and log of number following is
0.46), indicating that the network reconstruction process is
finding properties of the network that are not possible to see
from follower/following score alone.

We can also compute correlations between individuals in
this network. Let C be a matrix of correlations, where cij =
cji is the correlation of column i in Dy with column j. Figure
4 is a heatmap representation of C on this twitter data. Notice
how Joe Rogan and Donald Trump are highly correlated
with several other members of this network. However, neither
are among the top influencers or top influenced within this
network, indicating that network reconstruction is not simply
discovering correlations.

IV. CONCLUSIONS AND FUTURE WORK

Therefore, we have developed a new metric for scoring
influence within a network of Twitter users based on a
systems-theoretic approach to network reconstruction. Given
the metric, we determined a method for finding trendsetters
not based on a follower-following relationship for Twitter
users.

This work should extend easily to social media applica-
tions beyond Twitter, although there are several areas that
could be changed to possibly improve the results, such as:

1) Increasing number of Twitter users considered and
number of tweets collected,

2) Trying different step sizes smaller or large than 24
hours,



Fig. 3. Various scores for individuals in the reconstructed twitter network. The first column (light blue) is the normalized influencer score for each
individual, which are the column sums of matrix N . The second column (orange) is the normalized influenced score for each individual, which are the
row sums of matrix N . The third column (gray) is the log of the number of followers for each individual as reported by twitter, normalized. The fourth
column (yellow) is the log of the number of people each individual is following as reported by twitter, normalized. The final column (dark blue) is the
trendsetter score, which is the ratio of influencer score to influenced score, normalized.

Fig. 4. Pairwise correlations between individuals from the Twitter data.

3) Topic selection using HDP, identifying whether simple
selection of some number of popular topics would be
better for labeling the tweet than our current procedure,

4) Using a projection method other than the 2-norm that
better maintains the notion of distance between the
word2vec vectors,

5) Further development of the robust, blind, passive net-
work reconstruction method for dynamical structure
functions focusing especially on whether the properties
of stability or strict causality could be removed
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