
Execution Order Matters in Greedy Algorithms with Limited Information

Rohit Konda, David Grimsman, Jason R. Marden

Abstract— In this work, we study the multi-agent decision
problem where agents try to coordinate to optimize a given
system-level objective. While solving for the global optimum
is intractable in many cases, the greedy algorithm is a well-
studied and efficient way to provide good approximate solutions
- notably for submodular optimization problems. Executing the
greedy algorithm requires the agents to be ordered and execute
a local optimization based on the solutions of the previous
agents. However, in limited information settings, passing the
solution from the previous agents may be nontrivial, as some
agents may not be able to directly communicate with each
other. Thus the communication time required to execute the
greedy algorithm is closely tied to the order that the agents
are given. In this work, we characterize interplay between the
communication complexity and agent orderings by showing
that the complexity using the best ordering is O(n) and
increases considerably to O(n2) when using the worst ordering.
Motivated by this, we also propose an algorithm that can find
an ordering and execute the greedy algorithm quickly, in a
distributed fashion. We also show that such an execution of
the greedy algorithm is advantageous over current methods for
distributed submodular maximization.

I. INTRODUCTION

Many real-world problems are well-modeled as multiagent
decision problems, including building energy management
[1], stock trading [2], water resource allocation [3], [4], traf-
fic light management [5], the power grid [6], and robot path
planning [7]. In these scenarios, the set of n decision makers,
or agents, coordinate to a joint decision that maximizes some
objective function.

In general, finding the optimal decision set is computation-
ally intractable, even for a centralized authority. Therefore,
there exist a multitude of techniques for arriving at a joint
decision, which may be an approximation of the optimal.
For instance, consensus algorithms offer a way for agents
to converge as a group toward a unified decision [8]–[10].
In other settings, a game-theoretic approach is advantageous,
where agents arrive at a joint decision which is some form
of equilibrium (e.g., Nash equilibrium [11], Wardrop equilib-
rium [12], Stackelberg equilibrium [13], etc.). Of course even
finding such equilibria can be challenging [14], but there are
subclasses of problems where this can be done efficiently
[15].

Another common approach to multiagent decision prob-
lems is a greedy algorithm [16], [17]. A common theme
among greedy algorithms is that at each iteration of the
algorithm, a myopic choice is made: simply pick the best

R. Konda and J. R. Marden are with the Department of Electrical
and Computer Engineering at the University of California, Santa Barbara,
CA and D. Grimsman is with the Department of Computer Science at
Brigham Young University. This work is supported by AFOSR Grant
#FA9550-20-1-0054 and AFOSR Grant #FA9550-21-1-0203.

immediate option, ignoring the effect on future iterations of
the algorithm. As with the other algorithms mentioned above,
greedy algorithms in general are not always guaranteed to
find an optimal solution to a given problem, however, they
are often easy to implement, execute quickly, and in some
cases provide some degree of optimality.

This work focuses on the scenario where a greedy al-
gorithm is used to solve a multiagent decision problem.
In this setting, a greedy algorithm is implemented by first
ordering the agents. Then each agent sequentially makes its
decision by choosing the action that maximizes the objective
function, based solely on the decisions of previous agents in
the sequence. An underlying element of the greedy algorithm
is that the agents are able to coordinate with each other
via some network. In the best case, such a network would
allow for each agent to communicate with all other agents
directly. In many applications, however, this is not realistic;
communication between agents i and j must pass through
other agents in the network. If i and j are on opposite ends of
the network, or if the network has highly-limited bandwidth,
this communication may be delayed. In light of this, two
questions arise:

1) Given the structure of the communication network,
how does the ordering of the agents affect the time
it takes to complete the greedy algorithm?

2) Can the agents coordinate among themselves to find
the ordering that will cause the greedy algorithm to
complete as fast as possible?

We address the first question by showing, given a network
structure, that the greedy algorithm finishes in O(n2) time
steps for the worst ordering and O(n) time steps for the best
ordering. We then address the second question by presenting
a fully-distributed algorithm whereby agents can find a near-
optimal ordering while simultaneously runnning the greedy
algorithm.

Of particular import in this work are submodular maxi-
mization problems, which are prevalent in modeling many
applications, for e.g., see [18]–[21] A key feature that
is shared among the objective functions in these various
domains is a property of diminishing returns. For example, in
outbreak detection in networks, the added benefit of placing
an outbreak sensor on a node in a network is valuable
when there are few other sensors in the network, and less
valuable when there are already many other sensors present.
Objectives that exhibit such properties are submodular.

While such problems are NP-Hard in general, the property
of submodularity can be exploited to show that certain
algorithms can achieve near-optimal results. The seminal
work in [22] shows that a centralized greedy algorithm can,

2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

978-1-6654-5196-3/$31.00 ©2022 AACC 1305

Authorized licensed use limited to: Brigham Young University. Downloaded on February 25,2023 at 17:18:17 UTC from IEEE Xplore. Restrictions apply.

in fact, provide a solution that is guaranteed to be within 1/2
of the optimal solution. More sophisticated algorithms have
pushed this guarantee from 1/2 to 1−1/e ≈ 0.63 [23], [24].
Progress beyond this approximation frontier is not possible
for polynomial time algorithms as it was also shown that no
such algorithm can achieve higher guarantees than 1− 1/e,
unless P = NP [25].

Recently, work has emerged wherein submodular maxi-
mization problems are modeled as multiagent decision prob-
lems [26]–[29]. In Section V, we will show how our version
of the greedy algorithm applies to this setting, and how
this algorithms compares to existing techniques in terms of
runtime and performance guarantees. It will be shown that
the greedy algorithm will complete in fewer time steps than
existing methods, while still maintaining 1/2-optimality in
the resulting decision set.

In Section II, we introduce our model. In Section III, we
present our main results on communication time guarantees
versus different orderings. We empirically verify our the-
oretical results in Section IV and discuss the implications
in submodular maximization problems in Section V. We
conclude in Section VI. The relevant code is found at [30]
and a full version of this paper with proofs is found at
[31]. We sincerely thank Gilberto Diaz-Garcia for the helpful
discussions.

II. MODEL

Consider a distributed optimization problem with n agents
I = {1, . . . , n}, where each agent is endowed with a
decision or action set Ai. We denote an action as ai ∈ Ai,
and a joint action profile as a ∈ A = A1×· · ·An. We assume
that each agent i has the ability to “opt out” of participating
in the decision process. This is modeled by having an action
a∅i ∈ Ai, so that when agent i chooses action a∅i , agent
i is opting out. The quality of each joint action profile is
evaluated with a global objective function W(a) : A → R≥0
that a system designer seeks to maximize. In other words,
the goal of the system designer is to coordinate the agents
to a joint action profile that satisfies

aopt ∈ argmax
a∈A

W(a). (1)

In general, solving the multi-agent decision problem in
Eq. (1) is infeasible, due to computational, informational,
communication constraints etc. Therefore, fast, distributed
algorithms are employed to compute good approximate so-
lutions. The greedy algorithm has cemented its place as a
universal approach to arrive at approximate solutions in many
application domains. In this algorithm, the set of agents is
ordered (for instance, according to its index i) and then each
agent sequentially solves the reduced optimization problem

ãi ∈ argmax
ai∈Ai

W(ã1, . . . , ãi−1, ai, a
∅
i+1, . . . , a

∅
n), (2)

where each agent i chooses the best action ãi given that
the previous agents in the sequence have also played their
best action and the successive agents in the sequence have
opted out. After each agent chooses according to Eq. (2), then

the algorithm is complete and the resulting set of decisions
(ã1, . . . , ãn) comprises the joint decision set ã. The process
completes in n time steps, where a time step is comprised of
an agent making a decision and communicating that decision
to future agents in the sequence.

However, the greedy algorithm makes a key assumption
that agents have access to the decisions of the previous
agents. In purely distributed systems, this assumption may be
infeasible. There have been prior works that study the per-
formance of the greedy algorithm with relaxed informational
assumptions, in that agent i only knows the decisions of some
strict subset of the previous agents S ⊂ {1, . . . , i− 1} [17],
[32]. However, this work takes a different approach, where
we assume that agents can make up for their informational
deficiencies through a communication infrastructure. We
model the communication constraints through an underly-
ing graph structure G = (V, E), where each vertex in V
corresponds to an agent in I and each edge (i, j) ∈ E =
V × V implies that agents i and j can communicate with
one another. The graph G is assumed to be connected and
undirected throughout this paper, unless explicitly stated. The
set of agents that agent i can communicate with is agent i’s
neighborhood Ni.

The primary focus of this work is to examine the interplay
between the communication graph G and the order in which
the greedy algorithm in Eq. (2) is solved under. For a given
graph G, the order π : V → I is defined by which label i
given to each vertex v. Therefore, given G, we would like the
characterize the communication time guarantees of the worst
order and the best order. To analyze the spectrum of possible
guarantees with respect to different ordering methods, we
define the following two quantities

Tmin(G) = min
π

T (G, π), (3)

Tmax(G) = max
π

T (G, π), (4)

where T (G, π) refers to the time it takes for the commu-
nication process to finish for a given graph G and ordering
π. We will use πbest and πworst to refer to the orderings
that are the solutions of Eq. (3) and Eq. (4) respectively. We
remark that only in the full information setting, where Gc is
the complete graph, is the run-time for any order the same,
with Tmax(Gc) = Tmin(Gc) = n− 1.

We can describe the k-hop communication, in which an
agent i’s greedy action ãi is passed along to agents outside
of its neighborhood Ni, using the following graph-theoretic
notation. A walk on the graph G is a sequence of vertices γ =
(v1, . . . , vm), in which each successive pair (vj , vj+1) ∈ E
for all 1 ≤ j < m. We denote the length of the walk as |γ|
being the number of vertices in the sequence. A spanning
walk is a walk in which all vertices in the graph are visited
and a minimum spanning walk is a spanning walk with
shortest length. A path p is a walk in which all the vertices
{vj}j≤m are all distinct. The expression of T (G, π) is given
as

T (G, π) =
n−1∑
i=1

(
min
pi→i+1

|pi→i+1| − 1
)
, (5)

1306

Authorized licensed use limited to: Brigham Young University. Downloaded on February 25,2023 at 17:18:17 UTC from IEEE Xplore. Restrictions apply.

where pi→i+1 is a path on the graph from the vertex (labeled
with) i to the vertex i + 1. This expression is motivated
by a natural communication process, where initially agent
1 computes its greedy action ã1 at time 0. Then agent 1
communicates ã1 to agent 2 through a k-hop walk through
the graph, where each hop is assumed to take 1 time step.
Then agent 2 computes ã2 given ã1 and passes both actions
to agent 3 through another k-hop walk. Continuing this
process, agent n − 1 passes {ãj}j<n to agent n and agent
n computes ãn finishing the process. To isolate the run-time
analysis with respect to only the communication time, we
also assume that agents can solve for their greedy action ãi
arbitrarily fast.

III. MAIN RESULTS ON COMMUNICATION TIME

A. Motivating Example

To make the communication process concrete, consider
when the given communication graph is a line graph as
shown in Figure 1. In this graph scenario, agent 1 initially
computes its greedy response ã1 and passes the action it has
played to agent 2 at t = 0. Then at t = 1, agent 2 (knowing
ã1) can compute ã2 and passes both ã1 and ã2 along to agent
3. Continuing this to t = 5, agent 6 will have been passed
the greedy actions of all previous agents 1 through 5 and
play its greedy action ã6, completing the greedy algorithm
in Eq. (2). This will complete in T (G, π) = 5 time steps,
which is the best that one can hope for when implementing
the greedy algorithm in a limited information setting.

Fig. 1: Example of a line graph, where we have labeled the
vertices according to the best ordering πbest. In this example,
the agents compute their greedy action and pass it down the
line.

However, consider the following order in Figure 2. This
situation can occur if the order π is improperly picked
by the system operator. Under this ordering, agent 2 can
only receive the greedy action of agent 1 through a 3-
hop path through agents 6 and 4, since there is not a
direct communication link between agent 1 and agent 2.
Following this logic, the greedy algorithm will complete at
time T (G, π) = 3+5+4+3+2 = 17, which can be seen to
be significantly higher than the previous well chosen order.

Fig. 2: Example of a line graph, but instead we consider the
adversarial ordering πworst in which the vertices are labeled
intermittently. In this instance, the k-hop communication
path must bounce back and forth between agents to complete
the greedy algorithm.

Extending this argument to n agents, under a line graph,
the greedy algorithm under the best ordering πbest will

complete in T (G, πbest) = n − 1 steps and under the worst
ordering πworst will complete in T (G, πworst) =

⌊
n2/2

⌋
− 1

steps, where bac is the floor function. Therefore, there may
be a significant gap in the communication complexity that
results from choosing different orderings. We analyze the
possible gap by characterizing the quantities Tmax(G) and
Tmin(G) in this paper.

B. Communication Run-time Characterizations

We outline the main theorem of the paper below, where
the worst case communication time over any graph structure
is given for the best and worst orderings. The corresponding
graph structures and orders that attain the worst-case com-
munication time are displayed in Figure 2 and Figure 3.

Fig. 3: A 7 node star graph with agent 2 in the center. We
note that the communication time T (G, π) on this graph
using any ordering must be greater than 2 · 7 − 4 = 10.
For n ≥ 3 agents, the n-node star graph is the worst case
graph for the best ordering πbest.

Theorem 1. Let n ≥ 3 be the number of agents. The
maximum communication time required to complete the
greedy algorithm in Eq. (2) for any undirected, connected
communication graph G with the best and worst orderings
is equal to

max
G

Tmin(G) = 2n− 4 (6)

max
G

Tmax(G) =
⌊
n2/2

⌋
− 1, (7)

where Tmin(G) is defined in Eq. (3) and Tmax(G) is defined
in Eq. (4) and bac is the largest integer that is below a.

C. Distributed Orderings that are Near-Optimal

According to Theorem 1, there is a significant complexity
gap between using the best ordering πbest and worst ordering
πworst for the communication time. However, finding the
best order πbest in general is not practical either due to
computational restrictions or lack of information about the
graph. So we would like to be able compute orderings
that get as close to the run-time with πbest as possible in
a feasible manner. Therefore in this section, we construct
an algorithm that can quickly compute a good ordering
in conjunction with executing the greedy algorithm. An
outline of the proposed algorithm is in Algorithm 1 with a
fully distributed implementation found in [30]. The proposed
design in essence computes a spanning walk on the graph
that is close to the length of the minimum spanning walk
through a variant of a depth-first search algorithm.

1307

Authorized licensed use limited to: Brigham Young University. Downloaded on February 25,2023 at 17:18:17 UTC from IEEE Xplore. Restrictions apply.

The distributed implementation of Algorithm 1 to compute
an approximate solution to Eq. (1) offers significant bene-
fits over other distributed approaches. The communication
scheme is simple, which allows for linear-time guarantees.
This also means that the message complexity is low, where
the bulk of the message is comprised of the previous agent’s
actions and the communication is robust to time delays.
Lastly, since the base of Algorithm 1 is the greedy algorithm,
we also inherit the corresponding performance guarantees.
To be able to run Algorithm 1, we assume that each agent
(vertex) can store and access the following variables.
• v.actions = ∅ is the set of greedy actions that v knows.
• v.order = ∅ is the index in I that v is labeled with.
• v.parent = ∅ is v’s parent in the depth first search.
• v.neighborhood is the neighborhood set of v.
We also assume that a seed vseed is given as the start-

ing point of the Algorithm 1. The communication time of
Algorithm 1 is equivalent to the total number of calls to
MESSAGE, where the vertex v messages either a vertex
that hasn’t been visited or its parent v.parent. We keep
track of the communication time through the variable t.
The communication time guarantees of Algorithm 1 is given
below.

Proposition 1. Let n be the number of agents and
Talg(G, vseed) be the output of Algorithm 1 given a communi-
cation graph G and a seed vertex vseed ∈ V . The maximum
communication time for any undirected, connected G and
seed vseed is

max
G,vseed

Talg(G, vseed) = 2n− 2 (8)

Thus the communication guarantees of Algorithm 1 is
only off by a constant of 2 from the optimal communication
guarantee of 2n−4 from the best ordering πbest. We remark
that this difference can be further reduced if the termina-
tion condition is changed from ‘v.parent is not empty’ to
‘v.order = n’, where n is the number of agents.

D. Directed Communication Graphs

In this section, we consider the communication time
guarantees with respect to the more general class of con-
nected, directed graphs using different orderings. Under the
class of undirected graphs, there is a significant gap in the
communication time guarantees for the best πbest and the
worst πworst orderings. Not surprisingly, when we relax to
the optimization problem maxGdir

Tmax(Gdir) over the class
of directed graphs, the worst case guarantees also increase.
However, when considering the optimization problem for the
best ordering over directed graphs maxGdir

Tmin(Gdir), we
have that the worst case guarantees are also of quadratic
order. Therefore in directed graphs, the gap between the per-
formance guarantees under different orderings is relatively
small. This is elaborated on in the following lemma.

Lemma 1. Let n ≥ 4 be the number of agents. The maximum
communication time required to complete the greedy algo-
rithm in Eq. (2) for any directed, connected communication

Algorithm 1 Distributed Near-Optimal Ordering

Require: graph G and a vertex vseed ∈ V
Output: time t

initialize the time t← 0
INIT(vseed, ∅, ∅, 1)
return t
procedure INIT(v, vpar, α, i)

label v as done
update v.order← i and v.parent← vpar
let v compute ãi from Eq. (2) given actions α
update v.actions← α ∪ {ãi}
MESSAGE(v, v.actions)

end procedure
procedure MESSAGE(v, α)

update v.actions← α
if exists w in v.neighborhood not labeled done then

increment t← t+ 1
INIT(w, v, α, |α|+1)

else if v.parent is not empty then
increment t← t+ 1
MESSAGE(v.parent, α)

end if
end procedure

graph Gdir with the best and worst ordering is

max
Gdir

Tmin(Gdir) ≥
⌊n
2

⌋
·
⌈n
2

⌉
, (9)

max
Gdir

Tmax(Gdir) = (n− 1)2, (10)

where bac is largest integer smaller than a and dae is the
smallest integer larger than a.

IV. SIMULATIONS

We analyze our theoretical results for the communication
time guarantees empirically through a simulation, presented
in Figure 4 and Figure 5. The code used to generate the
simulations can be found in [30]. We use the model of
Erdos-Renyi networks [33], where each possible undirected
pair of edges (i, j) has a probability P ≤ 1 of existing, to
generate a sample set of possible graph structures. For Figure
4, we sample 200 instances of Erdos-Renyi networks with
6 nodes and a probability parameter of P = .3. For each
graph, we calculate the communication time for the greedy
algorithm using the best ordering πbest, the ordering given by
Algorithm 1, and a randomly assigned ordering. For Figure
5, we sample 300 instances of Erdos-Renyi networks with 40
nodes and a probability parameter of P = .05. In Figure 5,
we calculate the communication time for only the ordering
given by Algorithm 1 and a randomly assigned ordering.

We observe in Figure 4 that indeed the best ordering πbest
achieves the lowest distribution of communication times,
centered closely to n = 6. The distribution of communication
times of the ordering given in Algorithm 1 is noticeably close
to the one of πbest, with indeed no run-times over 2n = 12.
The distribution of the communications using random order-
ings does perform the worst with the largest spread. In Figure

1308

Authorized licensed use limited to: Brigham Young University. Downloaded on February 25,2023 at 17:18:17 UTC from IEEE Xplore. Restrictions apply.

5, we compare communication times from the ordering from
Algorithm 1 directly with the random ordering, as computing
the best ordering πbest is infeasible for large n. We see the
same trends in Figure 4 reflected in a more extreme fashion.
The distribution of communication times using the ordering
of Algorithm 1 is still upper bounded by 2n = 80. However,
the distribution times of communication times using the
random ordering is now centered much higher with a larger
spread as well. Therefore, we see significant benefits from
using the ordering from Algorithm 1 rather than the naive
approach of using random ordering.

Fig. 4: We show the distribution over of communication
times needed to complete the greedy algorithm for 200
instances of random graphs generated by a Erdos-Renyi pro-
cess with respect to the random ordering, the best ordering
πbest, and the ordering from Algorithm 1. For the graph
parameters n = 6 number of agents and P = .3 probability
of an edge existing, we see that πbest gives slightly lower
average communication times than the ordering from Algo-
rithm 1, but both offer significant improvements over the
random ordering.

V. SUBMODULAR MAXIMIZATION

In this section, we discuss submodular maximization
problems, which can be modeled as multiagent decision
problems. Consider a base set of elements E, and let ai ⊆ E,
Ai ⊆ 2E , and a∅i = ∅. The objective function takes the form
W (a) = f (∪ai∈aai), where f : 2E → R has the following
properties for any A ⊆ B ⊆ E:

1) Submodular: f(A∪{x})−f(A) ≥ f(B∪{x})−f(B)
for all x ∈ E \B

2) Monotone: f(A) ≤ f(B)
3) Normalized: f(∅) = 0

In this setting, it has been shown that the greedy algorithm
that is implemented in Algorithm 1 guarantees that W (ã) ≥
(1/2)W (aopt), where ã is defined in Eq. (2).

Fig. 5: We compare the communication times under the
random ordering to the times under the ordering algorithm
proposed in Algorithm 1. For the graph parameters n = 40
number of agents and P = .05 probability of an edge exist-
ing, we see a marked decrease in the communication time
from the random ordering to using the proposed algorithm
over a set of 300 randomly generated graphs.

A. Comparison with Other Distributed Algorithms

As mentioned previously, much work has been done to
develop other algorithms to solve submodular maximization.
For instance, [28] presents a similar distributed algorithm,
using a multilinear extension, and a distributed pipage round-
ing technique. At each time step, each agent performs a
calculation for each action based on a sample of K actions
drawn from a probability distribution. After T time steps,
the performance guarantee is (1−1/e)(1−(2d(G)n+n/2+
1)(n/T)) with probability at least 1−2nTe−K/(8T

2). Thus,
for high T and K = O(T 2), there is a high probability
that the algorithm gives the 1 − 1/e guarantee. Using this
information, the algorithm could provide a 1/2 guarantee
only for T ≥ 4.78(2d(G)n2+n2/2+1), and only with high
probability when K = O(T 2).

The paper [29] describes a Jacobi-style algorithm, where
at each time step agent i creates a strategy profile, i.e., a
probability distribution across each of its actions. Then, it
chooses K of those values to share with its neighbors to
propagate through the network. It was shown that the result-
ing decision set approaches being within 1/2 the optimal as
the number of iterations increases. It is only shown in the
paper that the probability of achieving the 1/2 guarantee
is 1 − O(1/T) rather than an explicit time expectation.
However, the examples in the paper suggest that it may take
T ≥ n2 or more time steps to realize this.

In another example, [27] presents the Constraint-
Distributed Continuous Greedy (CDCG), a consensus-style
algorithm, in which agent i shares an m-vector with all
its neighbors at each time step, where m is the number

1309

Authorized licensed use limited to: Brigham Young University. Downloaded on February 25,2023 at 17:18:17 UTC from IEEE Xplore. Restrictions apply.

of actions available to i. It is shown that the resulting
decision set approaches being within 1− 1/e of the optimal
as the number of iterations T increases. The error in the
performance guarantee vanishes at a rate of O(n5/2/T), and
therefore, it may require T ≥ n5/2 time steps in order to
reach an acceptable error.

In each of the three methods listed above, each time step
requires each agent do perform some calculation for each
of its actions. The time requirement for each to reach an
acceptable solution is expected to be greater than 2n − 2,
which is the number of time steps it takes to complete
Algorithm 1. This suggests that there is a tradeoff between
performance guarantees and time complexity: Algorithm 1
achieves the 1/2 guarantee quickly, but other algorithms
converge to a solution within 1− 1/e, but more slowly.

VI. CONCLUSION

In this work, we analyze the greedy algorithm in a multi-
agent context. More specifically, when the agents have lim-
ited information about the other agents but can communicate
with a subset of the other agents, we characterize the effects
of using different agent orderings on the communication time
over the network. First, we have shown that under the best
ordering over any graph, the communication time is 2n− 4,
where n is the number of agents. When considering the
worst ordering, we also show that this bound increases to⌊
n2/2

⌋
−1 holding for any communication network. We also

provide an algorithm that can be used in a distributed fashion
to obtain a communication time guarantee of 2n− 2, which
is a constant factor away from the best communication guar-
antee. Furthermore, we verify these results computationally
in Section IV and describe the implications in the context
of submodular optimization problems in Section V. Future
work is comprised of extending this work to analyze the
interplay between agent orderings, the communication time
guarantees, and possible performance guarantees.

REFERENCES

[1] P. Zhao, S. Suryanarayanan, and M. G. Simoes, “An energy man-
agement system for building structures using a multi-agent decision-
making control methodology,” IEEE Transactions on Industry Appli-
cations, vol. 49, no. 1, pp. 322–330, 2013.

[2] Y. Luo, K. Liu, and D. N. Davis, “A multi-agent decision support
system for stock trading,” IEEE Network, vol. 16, pp. 20–27, jan 2002.

[3] M. T. Kahil, A. Dinar, and J. Albiac, “Cooperative water management
and ecosystem protection under scarcity and drought in arid and
semiarid regions,” Water Resources and Economics, vol. 13, pp. 60–
74, 2016.

[4] K. Madani, “Game theory and water resources,” Journal of Hydrology,
vol. 381, no. 3-4, pp. 225–238, 2010.

[5] L. Cruz-Piris, D. Rivera, S. Fernandez, and I. Marsa-Maestre, “Op-
timized sensor network and multi-agent decision support for smart
traffic light management,” Sensors (Switzerland), vol. 18, no. 2, 2018.

[6] H. Bai and B. Zhao, “A survey on application of swarm intelligence
computation to electric power system,” Proceedings of the World
Congress on Intelligent Control and Automation (WCICA), vol. 2,
no. 60421002, pp. 7587–7591, 2006.

[7] N. SinghPal and S. Sharma, “Robot Path Planning using Swarm Intel-
ligence: A Survey,” International Journal of Computer Applications,
vol. 83, no. 12, pp. 5–12, 2013.

[8] G. T. Nguyen and K. Kim, “A survey about consensus algorithms used
in Blockchain,” Journal of Information Processing Systems, vol. 14,
no. 1, pp. 101–128, 2018.

[9] S. Kar and J. M. Moura, “Distributed consensus algorithms in sensor
networks: Quantized data and random link failures,” IEEE Transac-
tions on Signal Processing, vol. 58, no. 3 PART 1, pp. 1383–1400,
2010.

[10] D. Ongaro and J. Ousterhout, “In search of an understandable consen-
sus algorithm,” Proceedings of the 2014 USENIX Annual Technical
Conference, USENIX ATC 2014, pp. 305–319, 2019.

[11] J. F. Nash et al., “Equilibrium points in n-person games,” Proceedings
of the national academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[12] J. G. Wardrop, “Road paper. some theoretical aspects of road traffic
research.,” Proceedings of the institution of civil engineers, vol. 1,
no. 3, pp. 325–362, 1952.

[13] H. Von Stackelberg, Market structure and equilibrium. Springer
Science & Business Media, 2010.

[14] I. Gilboa and E. Zemel, “Nash and correlated equilibria: Some
complexity considerations,” Games and Economic Behavior, vol. 1,
no. 1, pp. 80–93, 1989.

[15] D. Monderer and L. S. Shapley, “Potential games,” Games and
economic behavior, vol. 14, no. 1, pp. 124–143, 1996.

[16] B. Marzouki, O. Belkahla Driss, and K. Ghédira, “Multi Agent model
based on Chemical Reaction Optimization with Greedy algorithm for
Flexible Job shop Scheduling Problem,” Procedia Computer Science,
vol. 112, pp. 81–90, 2017.

[17] B. Gharesifard and S. L. Smith, “On distributed submodular max-
imization with limited information,” American Control Conference,
vol. 2016-July, pp. 1048–1053, 2016.

[18] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor place-
ments in Gaussian processes: Theory, efficient algorithms and empiri-
cal studies,” Journal of Machine Learning Research, vol. 9, pp. 235–
284, 2008.

[19] A. Singh, W. Kaiser, M. Batalin, A. Krause, and C. Guestrin, “Efficient
planning of informative paths for multiple robots,” in International
Joint Conference on Artificial Intelligence, pp. 2204–2211, 2007.

[20] A. Clark and R. Poovendran, “A submodular optimization framework
for leader selection in linear multi-agent systems,” in IEEE Conference
on Decision and Control, pp. 3614–3621, IEEE, 2011.

[21] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. Vanbriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 420–429, 2007.

[22] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—i,” Mathe-
matical programming, vol. 14, no. 1, pp. 265–294, 1978.

[23] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[24] Y. Filmus and J. Ward, “The power of local search: maximum coverage
over a matroid,” in Symposium on Theoretical Aspects of Computer
Science, pp. 601–612, LIPIcs, 2012.

[25] U. Feige, “A threshold of ln n for approximating set cover,” Journal
of the ACM, vol. 45, no. 4, pp. 634–652, 1998.

[26] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause, “Distributed
submodular maximization,” Journal of Machine Learning Research,
vol. 17, no. 1, pp. 8330–8373, 2016.

[27] A. Robey, A. Adibi, B. Schlotfeldt, G. J. Pappas, and H. Hassani,
“Optimal algorithms for submodular maximization with distributed
constraints,” arXiv, vol. xxx, pp. 1–20, 2019.

[28] N. Rezazadeh and S. S. Kia, “Distributed strategy selection: A
submodular set function maximization approach,” arXiv preprint
arXiv:2107.14371, 2021.

[29] B. Du, K. Qian, C. Claudel, and D. Sun, “Jacobi-style iteration for dis-
tributed submodular maximization,” arXiv preprint arXiv:2010.14082,
2020.

[30] R. Konda, “Kondaacc2021.” https://github.com/
rohit-konda/KondaACC2021.git, 2021.

[31] R. Konda, D. Grimsman, and J. Marden, “Execution order mat-
ters in greedy algorithms with limited information,” arXiv preprint
arXiv:2111.09154, 2021.

[32] D. Grimsman, M. S. Ali, J. P. Hespanha, and J. R. Marden, “Impact of
information in greedy submodular maximization,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), pp. 2900–2905,
IEEE, 2017.

[33] P. Erdos, A. Rényi, et al., “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci, vol. 5, no. 1, pp. 17–60, 1960.

1310

Authorized licensed use limited to: Brigham Young University. Downloaded on February 25,2023 at 17:18:17 UTC from IEEE Xplore. Restrictions apply.

