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Abstract— The use of game theoretic methods for control
in multiagent systems has been an important topic in recent
research. Valid utility games in particular have been used to
model real-world problems; such games have the convenient
property that the value of any decision set which is a Nash
equilibrium of the game is guaranteed to be within 1/2 of
the value of the optimal decision set. However, an implicit
assumption in this guarantee is that each agent is aware of
the decisions of all other agents. In this work, we first describe
how this guarantee degrades as agents are only aware of a
subset of the decisions of other agents. We then show that this
loss can be mitigated by restriction to a relevant subclass of
games.

I. INTRODUCTION

Game theoretic methods have recently received much
attention for their usefulness in the control of multiagent
systems [1]. These methods have been applied in a wide
variety of applications, including air traffic control [2],
[3], the allocation of resources at universities [4], sensor
placement [5], airport security [6], the power grid [7], and
radio networks [8]. A common paradigm is that each agent
is a player in a cooperative game. Each agent’s decision-
making is governed by a utility function implemented by
the system designer. The goal is to create utility functions
that maximize a social welfare function valued by the system
designer.

An important class of models is that of valid utility games
[9], [10], [11]. Such games require that (1) the social wel-
fare function exhibits submodularity, a certain “diminishing
returns” property, (2) an agent’s utility is at least its marginal
contribution to the social welfare, and (3) the total utility
is at most the total value of social welfare. In this work,
we also include the property that the welfare function is
nondecreasing. Given these restrictions, the model is still
widely applicable and has been used to analyze market
sharing [12], allocating scientific credit [13], facility location
[9], and network formation games [14], among others.

A key result in valid utility games is that the value
(according to the welfare function) of any Nash equilibrium
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set of agent decisions is guaranteed to be within 1/2 of the
value of the optimal decision set [9]. In other words, the
system designer may choose any set of utility functions and
welfare function that satisfy the given properties, and the
emergent behavior has this optimality guarantee, regardless
of the number of agents in the system.

An underlying assumption in this guarantee, however, is
that each agent knows the decisions of all other agents in
the system. In many real-world scenarios, this assumption
may be unrealistic. For instance, communication could be
constrained by limited bandwidth [15], the number of agents
could be too large [16], information could be contaminated
or restricted by an attacker [17], there could be a lack of
trust among the agents [18], or the allowable amount of time
could be limited [19]. Therefore, recent work has begun to
explore what happens in settings where each agent is only
aware of a subset of other agents. For instance [17] considers
what happens to the 1/2 guarantee in valid utility games
when a subset of agents is compromised by an attacker, i.e.,
they can no longer communicate with the group, or vice
versa. The paper shows that with each compromised agent,
the denominator in the guarantee increases by 1, e.g., for
one compromised agent the guarantee decreases to 1/3. The
work in [15] considers a slightly different setting: that of the
greedy submodular maximization, wherein the agents have
an implicit ordering and make decisions sequntially accord-
ing to that ordering. The information sharing constraints are
more broad, however, in that each agent can only base its
decision on a subset of agents previous in the sequence. It
was shown that the guarantees of the algorithm decreased as
the maximum number of agents among whom there was no
information sharing increased.

This work generalizes these two works: here we consider
the general class of all valid utility games and also allow for
broad information sharing constraints, i.e., each agent can
observe the actions of some subset of agents. Two natural
questions arise:

1) How does the structure of these information sharing
constraints affect the equilibrium performance guaran-
tees?

2) What utility functions can provide a better guarantee?

Theorem 1 addresses the first question: essentially, the
performance guarantee is inversely related to the number of
groups of agents who have access to the same information
– for instance, in the complete graph, this number is 1.
This number increases with the number of constraints on
information sharing, and we show for a system with n agents,
a strategic attacker could cause (with minimal intervention)
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the performance guarantee to fall to 1/(n + 1), arbitrarily
bad for large systems.

Theorem 2 addresses the second question by introducing
a subset of valid utility games, where the utility functions
must all satisfy a certain consistency property. Among this
smaller set of systems, a lower bound on the guarantee is
(similar to [15]) instead tied to the largest set of agents,
among whom there is no reciprocal information sharing.
This lower bound is at least as high as the guarantee in
Theorem 1, and is strictly better for most problem instances.
Additionally, Proposition 1 provides an upper bound on any
possible guarantee for any fixed set of utility functions, even
those outside the bounds of valid utility games. This bound
is also given in terms of the largest set of agents among
whom there are not any edges.

II. MODEL

Consider a set of base elements S and a set of agents
N = {1, . . . , n}. Agent i has access to a set of actions
Xi, where each action xi ∈ Xi is a subset of elements of
S. Additionally, agent i is endowed with a utility function
Ui : X1 × · · · × Xn → R, which evaluates the action xi,
dependent on the decisions of all other agents, which we will
denote as x−i := (x1, . . . , xi−1, xi+1, . . . , xn). To highlight
this dependence, we use the notation Ui(xi, x−i).

An action profile x = (x1, . . . , xn) is evaluated by a
welfare function w : X1 × · · · ×Xn → R. Thus the agents’
collective goal is to find action profile xopt such that

xopt ∈ arg max
x1∈X1,...,xn∈Xn

w(x1, . . . , xn) (1)

In this work we consider welfare functions of the form
w(x) = f (∪ixi), where f : 2S → R. We will abuse notation
and denote f(xi, xj) to mean f(xi ∪ xj). Our focus will be
on valid utility games [9]:

Definition 1: A Valid Utility Game (VUG) is a system
with no information sharing constraints that satisfies the
following three conditions:

1) f is1

a) submodular:
f (A ∪ {s}) − f(A) ≥ f (B ∪ {s}) − f(B) for
all A ⊆ B ⊆ S and s ∈ S \B.

b) nondecreasing: f(A) ≤ f(B) for all A ⊆ B ⊆ S
c) normalized: f(∅) = 0.

2) Ui(xi, x−i) ≥ f(xi, x−i)− f (x−i) for all i
3)
∑
i Ui(xi, x−i) ≤ f(xi, x−i)

As an example, consider the marginal contribution utility,
defined as:

Ui(xi, x−i) = f(xi, x−i)− f(x−i). (2)

If each agent implements this utility, obviously property 2) is
satisfied at equality, and one can show that the submodularity
of f implies that 3) is likewise satisfied.

1The original defintion used in [9] did not require monotonicity or
normalization, yet we impose that as it suits our purposes here.

The emergent behavior of the system is defined to be a
Nash equilibrium. An action profile xeq is a Nash equilibrium
if

Ui(x
eq
i , x

eq
−i) ≥ Ui(xi, x

eq
−i), for all xi ∈ Xi and all i. (3)

In some contexts, the above definition is called a pure
strategy Nash equilibrium, while a probability distribution
across all action profiles x is called a mixed strategy, with
an analogous definition of a mixed strategy Nash equilibrium.
A pure strategy Nash equilibrium is not always guaranteed
to exist for VUGs, however, a mixed strategy one is. The
analysis in this paper focuses on systems that exhibit a pure
strategy Nash equilibrium, and we conjecture that this can
be extended to mixed strategies – a subject of future work.

A. Graph Constraints

The definition of the utility function Ui(xi, x−i) implicitly
assumes that each agent has access to the actions of all other
agents in the system. In many real-world settings, however,
this assumption may not hold. We model this restriction
by imposing that agent i is only aware of the actions of
some subset of agents Ni, and assuming that xj = ∅
for j ∈ N \ Ni. This assumption can either be thought
of as not being aware that these agents exist or that the
agents have opted out of the game. We will use the notation
Ui(xi, xNi

) to highlight this restriction. The definition of the
Nash equilibrium can then be extended as follows: an action
profile xeq is an equilibrium if

Ui(x
eq
i , x

eq
Ni

) ≥ Ui(xi, xeq
Ni

), for all xi ∈ Xi and all i. (4)

The sets Ni define a directed graph G = (V,E), where
V = N and (j, i) ∈ E if j ∈ Ni. We refer to such a graph
as an information sharing constraint graph, as it effectively
represents the information sharing constraints on the system.
We can now conclude that a game H is fully defined as the
tuple (N, f, {Ui}i, G), and we denote H to be the set of all
games as defined in this section.

Our goal in this work is to understand how an information
sharing constraint graph G will affect the value of the result-
ing equilibria normalized against the value of the optimal
solution across all games, i.e., the price of anarchy:

PoA(H, G) := min
H∈H(G)

xeq∈EQ(H)

f(xeq)

f(xopt(H))
∈ [0, 1], (5)

where H(G) are the set of all games with information
constraint graph G and EQ(H) is the set of all equilibrium
profiles that satisfy (4). For a graph G, a price of anarchy
of 1 would mean that all games subject to those information
sharing constraints would have optimal emergent behavior,
and a price of anarchy close to 0 would mean that the
constraints are such that one cannot make any meaningful
guarantee about the performance of the emergent behavior.
When G is the complete graph, it has been shown that
PoA(H, G) = 1/2 [9]. Thus we seek to find how various
graph structures might further degrade this value.
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Fig. 1: An illustration of information groups. The first graph is a complete graph, thus all nodes are in the only information
group. The second graph has edge (1, 2) removed, thus T (G) = ({1, 3, 4}, {2}), since 2 is the only node without an incoming
edge from 1. The third graph further has edge (3, 1) removed, and T (G) = {3, 4}, {1}, {2}. Finally the last graph has edge
(4, 3) removed, and each node is its own information group.

III. THE PRICE OF ANARCHY FOR VALID UTILITY
GAMES

In this section, we show the price of anarchy as a function
of the information constraint graph G. To do so, we introduce
the notion of an information group: a set of nodes which
is fully connected, and which have the same incoming
neighbors. Formally stated, T ⊆ N is an information group
of G if for all i, j ∈ T , Ni ∪ {i} = Nj ∪ {j}. An alternate
definition is that if A(G) is the adjacency matrix of G and
I the identity matrix, then all rows of A(G) + I associated
with the nodes in T are the same. A maximal information
group is an information group that is not a subset of any
other information group. We denote the set of all maximal
information groups of G as T (G), which is both unique and
a partition on the nodes of G. Denote τ(G) = |T (G)|. See
Figure 1 for an example. The price of anarchy for the set of
games subject to a graph constraint G can be expressed in
terms of its information group number τ .

Theorem 1: For any G where G has at least one edge,

PoA(H, G) =
1

1 + τ(G)
≥ 1

n+ 1
. (6)

The full proof is given below, but here we give an
overview. The properties from Definition 1 are used to
establish that PoA(H, G) ≥ 1

1+τ(G) . Tightness is shown by
example, where one carefully constructs a problem instance
and set of utility functions that satisfy Definition 1 so that
agents are incentivized into making poor decisions.

Theorem 1 effectively shows that the general class of valid
utility games is not robust against these types of information
constraints. For instance, consider the example set forth in
Figure 1. In the leftmost graph, which is a complete graph,
we see that PoA(H, G) = 1/2, recovering the well-known
result from [9]. However, the rightmost graph only has 3
edges removed, yet τ(G) = 4, and PoA(H, G) = 1/5. In
fact, for any number of agents this example is instructive:
there exist n−1 edges that can be removed form the complete
graph such that PoA(H, G) moves from 1/2 to 1/(n + 1)
— arbitrarily bad. For large systems, this implies that the
system designer cannot be content to simply choose utilities
that satisfy Definition 1.

Proof: We first show that

f(xeq)

f(xopt)
≥ 1

1 + τ(G)
, (7)

and then show that for any G, there exists f, {Xi}i, {Ui}i
which make the expression tight. We denote NT to mean
the set of incoming neighbors common to information group
T . Begin with defining the marginal contribution function
∆(A|B) : f(A ∪ B) − f(B), for A,B ⊆ S. This give the
objective function value for adding the elements in set A to
those in set B. Then

f(xopt) ≤f(xeq) + ∆(xopt|xeq), (8)

=f(xeq) +
∑
i

∆(xopt
i |x

opt
1:i−1, x

eq), (9)

≤f(xeq) +
∑
i

∆(xopt
i |x

eq), (10)

=f(xopt) +
∑

T∈T (G)

∑
i∈T

∆(xopt
i |x

eq), (11)

≤f(xeq) +
∑

T∈T (G)

∑
i∈T

∆(xopt
i |x

eq
j∈NT

), (12)

≤f(xeq) +
∑

T∈T (G)

∑
i∈T

Ui(x
opt
i , xeq

j∈NT
), (13)

≤f(xeq) +
∑

T∈T (G)

∑
i∈T

Ui(x
eq
i , x

eq
j∈NT

), (14)

≤f(xeq) +
∑

T∈T (G)

f(xeq
T ), (15)

≤f(xeq)(1 + τ(G)), (16)

where (8) is true by monotonicity of f , (9) is true by
definition of ∆(·), (10) is true by submodularity of f , (11)
is a reorganization of the sum, (12) is true by submodularity,
(13) is true by statement 2) in Definition 1, (14) is true by
the defintion of equilibrium, (15) is true by statement 3) in
the Definition 1, and (16) is true by monotonicity of f .

Next we construct an example worst-case f , {Xi}i, {Ui}i
such that

f(xeq)

f(xopt)
=

1

1 + τ(G)
(17)
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Fig. 2: Example used in the proof for Theorem 1. While
agent j1’s choice in equilibrium may seem unintuitive, it
is based on a carefully crafted utility function, such that
Defintion 1 is still satisfied for the system.

for any G. Let S = {sε, ssm, sbig, s2, . . . , sτ} be a set of
(possibly overlapping) 2-D boxes, as shown in Figure 4. Let
f(x) be the total area covered by the boxes in S(x): this
function is normalized, submodular, and monotone. For some
small ε > 0, let f({sε}) = ε, f({ssm}) = 1+ε, f({sbig}) =
2, and f({s2}) = · · · = f({sτ}) = 1. The box sbig “covers”
the box ssm, i.e., f({ssm, sbig}) = 2. The remaining pairs
of boxes are disjoint.

From each information group T1, . . . , Tτ choose a repre-
sentative agent j1, . . . , jτ . Since the label order is arbitrary,
we assume without loss of generality that there exists incom-
ing edges from agent j2 to the agents in T1, i.e., j2 ∈ N (T1).
The action sets are allocated as

Xi =

 {{sε}, {sbig}} if i = j1,
{{ssm}, {st}} if i = jt and t > 1,
{{sε}} otherwise.

(18)

Again, both f and {Xi}i are represented in Figure 2.
In order to define the utilities, we first define the action

profile xeq:

xeq =

{
{ssm} if i ∈ {j2, . . . , jτ},
{sε} if i /∈ {j2, . . . , jτ}.

(19)

As the notation implies, we will design the utilities so that
this action profile is an equilibrium. For every Tt ∈ T (G)
define xt, where

xti =

{
xeq
i if i ∈ Tt ∪N (Tt),
∅ if i /∈ Tt ∪N (Tt).

(20)

In other words, xt is the set of actions in xeq, with the
exception that all agents not in Tt choose the empty set. It is
important to note that due to the graph constraints, the utility
of agent i ∈ Tt for action profile xeq is Ui(xt). It can also
be observed that f(xt) = 1 + ε+ ptε, where pt ∈ {0, 1} is
an indicator: pt = 1 if j1 ∈ N (Tt) or |Tt| > 1 (i.e., sε is
chosen by some agent in Tt∪N (Tt)), and pt = 0 otherwise.

The utility functions are as follows:

Ui(xi, xNi
) =

 1 + ε if x = xt and i = jt
for some Tt ∈ T (G)

f(xi, x−i)− f(x−i) otherwise.
(21)

We claim that f, {Xi}, {Ui}i is a VUG. Since Ui = MCi
for all action profiles except when x = xt and i = jt,
we need only prove that the statements 2) and 3) in the
VUG definition are satisfied for these exceptions. Statement
2) holds since f(xt)−f(xti 6=jt) ≤ 1+ε = Ujt(x

t). Statement
3) holds, since:∑

i

Ui(x
t) =Ujt(x

t) +
∑

i/∈{jt,j1}

Ui(x
t) (22)

≤1 + ε+ ptε (23)
=f(xt). (24)

Recall that agent j1’s action set is {{sbig}, {sε}}, imply-
ing that

Uj1(x1) =1 + ε (25)
>2 + ptε− (1 + ε+ ptε) (26)

=f({sbig}, x1
−j1)− f(x1

−j1) (27)

=Uj1({sbig}, x1
−j1) (28)

For agent jt, t > 1, the action set is {{ssm}, {st}}, implying
that

Ujt(x
t) =1 + ε (29)
>1 + ptε− ptε (30)
=f({st}, xt−jt)− f(xt−jt) (31)

=Ujt({st}, xt−jt) (32)

Since all other agents have only a single action in their
action sets, we conclude that xeq is an equilibrium action
profile. The optimal profile xopt is where j1 chooses {sbig},
jt chooses {st} for t > 1, and all other agents choose {sε},
implying that f(xopt) = 2 + τ(G)− 1 + ε. Therefore,

f(xeq)

f(xopt)
=

1 + 2ε

1 + τ(G) + ε
. (33)

As ε→ 0, we see that (17) holds.

IV. CONSISTENT VALID UTILITY GAMES

The previous section showed that the performance guar-
antees associated with valid utility games can be quite poor,
even for information sharing constraint graphs that are quite
dense. It is thus imperative to find other classes of utility
functions that would offer more robustness against such
constraints. To this end, we introduce an additional utility
function property called consistency. A utility function is
consistent if

Ui(xi, xA) ≥ Ui(xi, xB), (34)

for all A ⊆ B ⊆ N \ {i}, for all xi ∈ Xi, xA ∈
Πj∈Axi, xB ∈ Πj∈Bxj , and for all i ∈ N . Here the sets A
and B represent possible choices of incoming neighbors; the
consistency property simply states that an agent’s preference
for any action decreases as the set of agents that it can
observe grows. Many common choices of utility functions,
including the marginal contribution utility function in (2),
satisfy this property.
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(a) In this graph, there are 4 cliques of size 1 (one for each node),
5 cliques of size 2 (one representing each edge), and 2 cliques of
size 3 (the sets {1, 2, 3} and {1, 2, 4}). The maximum independent
set is {3, 4}, thus α(G) = 2. For this graph, α∗(G) = α(G).
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(b) A graph where α(G) = 2 and α∗(G) = 2.5, where z =
[1/2, 1/2, 1/2, 1/2, 1/2]T maximizes (36). As a note, this is the
graph with the fewest number of nodes and edges such that α(G) <
α∗(G).

Fig. 3: Two example graphs showcasing the graph properties
defined in Section IV.

In order to state the result for this section, we first
introduce some terms from graph theory. We begin with
cliques:2 a clique is a set of nodes C ⊆ V such that for
every i, j ∈ C, either (i, j) ∈ E or (j, i) ∈ E. We denote by
K(G) the set of all cliques in G.

Another important notion in graph theory is that of inde-
pendence. An independent set J ⊆ V is a set of vertices such
that v1, v2 ∈ J implies (v1, v2), (v2, v1) /∈ E. A maximum
independent set is an independent set of G such that no other
independent set has more vertices. The independence number
α(G) is the number of nodes in the largest independent set
in G. For an example, see Figure 3a.

The work in [20] equivalently characterizes the indepen-
dence number as the solution to an integer linear program 3.
Let Q ∈ R|K(G)|×n be the binary matrix whose rows
are indicator vectors for the cliques in G. In other words,
Qij = 1 if node j belongs to clique i in G, and 0 otherwise.
Note that Q also includes cliques of size 1 (the individual
nodes). Then α(G) is given by

max
z

zT 1

subject to Qz ≤ 1
z ∈ Zn ≥ 0.

(35)

Note by definition that α(G) is always a positive integer.
However, in many applications, it is helpful to consider a

2The terms clique and independence set are traditionally defined only for
undirected graphs, however, we adapt those terms for our purposes here.

3It is actually the chromatic number and clique number that are defined
this way in [20]. However, using graph complementarity, it is an easy
extension to show that the solution to the linear program in (35) yields
a maximum independent set.

real-valued relaxation on these notions: this is the motiva-
tion for fractional graph theory [20]. Here we leverage the
fractional independence number α∗(G), which we define as
the real-valued relaxation to (35): 4

α∗(G) := max
z

zT 1

subject to Qz ≤ 1
z ≥ 0.

(36)

Considering now valid utility functions that are also con-
sistent, we have the following result.

Theorem 2: For any graph G,

PoA(Hc, G) ≥ 1

1 + α∗(Ḡ)
, (37)

where Hc ⊆ H is the set of all consistent valid utility games,
and Ḡ is the subgraph of G such that any “non-reciprocal”
edges from G are removed, i.e. if Ḡ = (V̄ , Ē), then V̄ = V ,
and (i, j) ∈ Ē iff (i, j), (j, i) ∈ E.

The proof is given in Appendix A. The consistency
property allows one to make a stronger guarantee about the
set of resulting equilibria. For instance, consider again the
example in Figure 1. Of course, the complete graph on the
left is such that α∗(Ḡ) = α∗(G) = α(G) = 1. Therefore,
Theorem 2 gives the same bound as the more general case:
that PoA(Hc, G) ≥ 1/2. The rightmost graph G is such that
Ḡ is a line graph: edges (2, 1), (1, 3), and (3, 4) are removed
since they have no reciprocal. Here α∗(Ḡ) = α((̄G)) = 2,
ensuring that PoA(Hc, G) ≥ 1/3, compared to 1/5 for
the more general case. In fact, it is trivial to show that
τ(G) ≥ α(Ḡ) for any G, since if 2 nodes are in the
same information group in G, they cannot be independent
in Ḡ. Therefore, one is better off (in terms of equilibrium
guarantees) implementing consistent utilities within the valid
utility framework.

V. A BOUND ON OPTIMAL UTILITIES

In this section, we relax the assumption that the system
is a valid utility game. Instead, we consider the class of all
utility functions, and we show an upper bound on the price
of anarchy given the information sharing constraint graph G.

Proposition 1: For any admissible utility function profile
U = (U1, . . . , Un) and any graph G,

PoA(HU (G)) ≤ 1

α(G)
, (38)

where HU (G) ⊆ H is the set of systems that employ U and
are subject to the information sharing constraint graph G.

For many graphs, there is still a large gap between the
upper bound on PoA shown in Proposition 1 and the lower
bound for consistent valid utilities shown in Theorem 2. For
instance, if G is a fully-connected directed acyclic graph,
then PoA(Hc(G)) ≥ 1/(n+1). However, it has been shown

4Another defintion of fractional independence exists in the literature
(see [21]), which was created to preserve certain properties of graph
independence (such as nested maximality), but has not been shown to
preserve α∗(G) = ω∗(Ḡ), where Ḡ is the complement graph of G and
ω∗(G) is the fractional clique number of G.
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Fig. 4: An example for the proof of Proposition 1. The agents
are labeled {1, . . . , 5}, the solid lines represent the graph G,
and the dashed lines represent the actions available to each
agent. G is a ring graph with 5 agents, and J = {1, 4} (the
green nodes). In a worst-case equilibrium, the green agents
choose s0 and the rest choose si. The optimal choices are
for the green agents to choose si and one of the blue agents
choose s0.

in [22] that deploying the marginal contribution utility can
guarantee a PoA of 1/2 for this graph constraint. Thus
utilities which are optimal in this sense are an ongoing study
of future work.

Proof: This proof is given by example. For ease of
notation, denote α to mean α(G) and let J ⊆ N to be
a fixed maximum independent set. Consider a system with
base set of resources S = {s0, . . . , sn}. Let f(s0) = 1, let
f(si) = 1 for i ∈ J , and let f(si) = ε for i /∈ J and
for some small ε. For every agent i ∈ J , the action set is
Xi = {{s0}, {si}}. For every agent i /∈ J , the action set is
Xi = {{si}}, in other words these agents have only a single
action to choose. See Figure 4 for an example.

Based on G agents in J cannot have a utility which
directly accounts for the action of any other agent in J at
equilibrium. One can assume without loss of generality that
for i ∈ J , Ui(si) ≤ Ui(s0), since the two elements are
indistinguishable except by indexing, which could easily be
switched. Therefore, a worst-case equilibrium decision set
xeq would be all agents in J choose {s0} and all other agents
choose {si}. In this case f(xeq) = 1 + (N − α)ε. On the
other hand, the optimal action profile xopt is where all agents
choose si, implying that f(xopt) = α+1+ε+(N−α−1)ε.
Then

lim
ε→0

f(xeq)

f(xopt)
= lim
ε→0

1 + (N − α)ε

α+ (N − α)ε
=

1

α
. (39)

By definition, this is then an upper bound on PoA.

VI. CONCLUSION

In this paper we have explored how information sharing
constraints can affect the value of the resulting Nash equi-
libria in valid utility games. Specifically, we showed that

the performance guarantees degrade quickly as information
sharing constraints are imposed. In order to mitigate these
effects, we introduce the notion of a consistent utility func-
tion, and show that the performance guarantees are often
strictly better when restricting to this set of utilities. Finally,
we gave an upper bound on performance guarantees for any
set of utilities.

Future work will continue to understand utility design that
is robust against these information sharing constraints. It will
also focus applying this analysis to other types of information
sharing constraints: for instance, a constrained number of bits
or the action of only one agent.
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APPENDIX

A. Proof for Theorem 2

This proof requires the introduction of a few more graph
terms. A clique cover is a partition on V such that the nodes
in each set of the partition form a clique. The clique cover
number k(G) is the minimum number of sets needed to form
a clique cover of G. For example in Figure 3a, a minimum
clique cover is {1, 3}, {2, 4}, so k(G) = 2.

Similar to the independence number, it can be shown that
k(G) is equivalently defined as an integer linear program-
ming problem. In fact this ILP is the dual to (35), implying
that α(G) ≤ k(G). Likewise, k∗(G), the fractional clique
cover number of G, can be defined by the dual to (36):

k∗(G) := min
y

yT 1

subject to QT y ≥ 1
y ≥ 0.

(40)

In accordance with the Strong Duality of Linear Program-
ming [?], it follows that:

α(G) ≤ α∗(G) = k∗(G) ≤ k(G). (41)

An example of a graph where the independence number
differs from the fractional independence number is found
in Figure 3b.

Begin with

f(xopt) ≤f(xeq) + ∆(xopt|xeq), (42)

=f(xeq) +
∑
i

∆(xopt
i |x

opt
1:i−1, x

eq), (43)

≤f(xeq) +
∑
i

∆(xopt
i |x

eq
Ni

), (44)

≤f(xeq) +
∑
i

Ui(x
opt
i , xeq

Ni
), (45)

≤f(xeq) +
∑
i

Ui(x
eq
i , x

eq
Ni

), (46)

where (42) and (44) are true by submodularity of f , (45) is
true from 2) of Definition 1, and (46) is true by definition
of equilibrium. Now suppose that we have a set of scalars
{yk}k∈K(Ḡ), such that yk ≥ 0 and

∑
k:i∈k yk ≥ 1 for all i.

Then∑
i

Ui(x
eq
i , x

eq
Ni

) ≤
∑
i

Ui(x
eq
i , x

eq
Ni

)

 ∑
k∈K(Ḡ):i∈k

yk


(47)

=
∑
i

∑
k∈K(Ḡ):i∈k

ykUi(x
eq
i , x

eq
Ni

) (48)

=
∑

k∈K(Ḡ)

∑
i∈k

ykUi(x
eq
i , x

eq
Ni

) (49)

≤
∑

k∈K(Ḡ)

∑
i∈k

ykUi(x
eq
i , x

eq
k\{i}) (50)

≤
∑

k∈K(Ḡ)

yk
∑
i∈k

Ui(x
eq
i , x

eq
k\{i}) (51)

≤
∑

k∈K(Ḡ)

ykf(xeq
k ) (52)

≤f(xeq)
∑

k∈K(Ḡ)

yk, (53)

where (50) is true by the consistency property, (51) is true
by 3) of Definition 1, and (52) is true by the monotonicity
of f . Combining this with (46) yields

f(xeq)

f(xopt)
≥ 1

1 +
∑
k∈K(Ḡ) yk

. (54)

The choice of {yk}k∈K(Ḡ) that minimizes
∑
k∈K(Ḡ) yk will

therefore give the highest lower bound. One can formulate
this as

min{yk}k∈K(Ḡ)

∑
k∈K(Ḡ) yk

subject to
∑
k:i∈k yk ≥ 1, for all i
yk ≥ 0, for all k.

(55)

This is equivalent to the formulation of k∗(Ḡ) in (40). Since
k∗(Ḡ) = α∗(Ḡ), this completes the proof.
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