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Abstract— The prevalence of misinformation in social net-
works is one of modern society’s greatest challenges. One of
the causes of this is the mutation of memes (e.g. ideas or facts)
into topically similar yet semantically different memes. In many
cases, individuals in social networks who mutate memes in such
a way can cause a spread of misinformation that leads to a large
group of people rejecting the initial meme. The goal of this study
is to create a model to represent meme mutation in contagion
simulations. In order to accomplish this, we develop a tree
structure that represents memes in a meaningful and mutable
way. We simulate the resulting model dynamics on a social
network using a complex contagion model, and illustrate how
memes described by this tree structure reflect many phenomena
observed in real-world social networks, such as the formation of
echo chambers, the impact of influencers, and the importance
of simplicity in meme spread.

I. INTRODUCTION

In today’s world, information spreads rapidly through
social networks and can have a significant impact on society
[1], [2]. It is therefore crucial to understand the mechanisms
behind the spread of ideas and information, particularly when
it comes to misinformation. Through the rest of this paper,
we use the term “meme” to refer to ideas and facts in a social
context.

As memes spread through social networks, they are com-
monly misinterpreted by actors in the network [3], [4]. In
essence, these actors “mutate” the meme into something
topically similar, yet semantically different. Let us consider
a meme indicating that international applications are down
at 40% of universities in the United States [5]. This meme
could be spread via a social network from a source to various
actors. Each actor has the potential to misinterpret the meme
in some way. For example, one actor could interpret the
meme to imply that international applications are down by
40% on average at universities instead of down at 40%
of universities. This actor could then spread this modified
meme to others in the network. Consequently, these mutated
memes can be further propagated through the network to
other actors. The focus of this study is to observe the spread
of misinformation through this mechanism.

This study aims to contribute to the understanding of this
mechanism by using an agent-based model to demonstrate
the mutation of ideas in a social network. There are many
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nuances in memes that make them difficult to model while
appropriately capturing their meaning [6], [7]. One of these is
the presence of qualitative concepts. Looking at our previous
example, the concept of international admissions is important
to the meaning of the meme. A mutation to this part of the
meme, such as changing it to refer to general admissions,
is difficult to model. In order to render a tractable model of
the mutation of memes, we limit the model to only mutate
quantitative and structural components of the meme. Despite
this limitation, we can capture many of the complexities of
how ideas are mutated in a social network, illustrating how
changes in the structure of a meme affects the way it spreads
through a network [8].

In order to examine the behavior of the mutation in this
model, we implement a stochastic complex contagion model
to represent the social network. Similar models are com-
monly used to represent the discrete spread of information
within a social network [8], [9], [10], [11]. This contagion
model generally functions by setting up a graph of nodes and
connections and initializing one node with the “contagion.”
In this case, the contagion is the original meme. In each
step of the simulation, uninfected nodes have a chance to be
“exposed” to a meme with a probability based on the number
of connections they share with nodes that are “infected” with
that meme. In our version of this model, actors also have a
chance to mutate the meme to which they are “exposed.”
We include other parameters that change the nature of the
propagation of memes in this model.

II. RELATED WORKS

Cinelli et. al. [2] collected evidence surrounding the spread
of misinformation about COVID-19 on social networks,
including Twitter, Instagram, and Reddit. They fit the spread
data to epidemic models. Where our study is a proof of
concept, this one by Cinelli et. al. contains data from the
spread of real-world misinformation. In a future study, we
could compare how our model holds up against actual
misinformation data like these.

Yan et. al. [3] discussed the effects of actors spreading
modified information on social media. Real data from Twitter
posts was used for this study. They found that there is a
positive correlation between mutating the ideas presented in
original sources to make a Tweet and a faster spread of those
Tweets. While they studied the specific changes made to the
original memes, they did not propose a computational model
to represent those memes as we do here.

West and Bergstrom [5] collected a list of science miscon-
ceptions that are used for some of our sample memes.



Rabb et. al. [10] developed a cognitive contagion model
describing the spread of misinformation. They used a modi-
fied complex contagion model to run their simulations. This
research parallels ours in that they developed a model for
contagion spread in an attempt to mirror reality. However,
our research focuses on a logical representation of memes,
while the research done by Rabb et. al. focuses exclusively
on the cognitive state of the actors in the network.

Emery et. al. [11] worked with complex contagion models
to attempt to understand how to mitigate the spread of misin-
formation. By eliminating certain problematic users from the
network, misinformation spread dropped dramatically. The
methods used in this study are similar to ours, however, our
focus is more on the model of the meme itself rather than
the dynamics of misinformation in the network.

Törnberg et. al. [8] studied the formation of echo chambers
in social networks. They employed contagion models to
represent the spread of misinformation in these networks.
Echo chambers appear in our data and play a significant role
in the spread dynamics of our system. While we use a similar
contagion model to Törnberg et. al., they do not focus on the
actual memetic mutation model for misinformation as we do
here.

Raponi et. al. [12] performed an overarching study of fake-
news propagation models supported by real-world datasets.
This included epidemiological, forest fire, energy, and infor-
mation cascade models. Unlike the model that we created,
the models discussed focused on modifying the nature of the
individuals and their possible states in the network rather
then the type of information being spread.

Lavorgna et. al. [13] studied the ability of social media
influencers to propel or limit the spread of misinformation
using an online experiment. The power of influencers is
reflected in our model, though not to the degree of nuance
presented in their research. In future research we may include
some of this nuance as a means to study influencers.

Harff et. al. [14] studied the distribution of information
by influencers within the context of a specific medical social
media platform. They found that when properly moderated
by experts in a field, the platform naturally self corrects,
preventing individuals who spread fake news from becoming
influencers.

Gabora [15] demonstrated the viability of meme spread
and evolution by describing a computer model in which an
entity holds a meme represented as a small neural network
that controls a set of parameters. These parameters were
fed into a fitness function, and agents in the simulation did
not adopt a new meme unless it produced fitter parameters
than the old meme. While these parameters were given
a concrete meaning (that of positions of body parts), the
memes themselves were quite abstract and only capture
quantitative aspects of memes.

III. MEME MUTATION & CONTAGION MODELS

The model we develop consists of three major compo-
nents, which are described in detail below. These components
are:

1) A model for representing an individual meme
2) Transformation rules for mutating a meme
3) A model for the spread and contagion of memes in a

social network
The transformation rules we define are based on a small

collection of misconceptions, fallacies and miscommunica-
tions, and is by no means complete. Instead, we intend to
provide a proof of concept and a sample for how the mutation
of memes in a social network can be represented. The goal
is to demonstrate a system that can represent a breadth of
the sort of ideas that might spread in a real social network.

A. Structure of a Meme

We model memes as a set of Boolean expressions and con-
ditional probabilities that can be represented in a recursive
tree structure. As a simple example, the meme “There is a
chance of catching a cold this winter” could be represented
as P (“catching a cold” | “winter”) = s% where s is some
small, non-zero percentage. This can be structurally divided
into the probability expression, the equality operator and
the percentage s. The probability expression includes two
propositions. A full grammar that can be used to generate
memes under this model is described in Figure 1.

The notation ⟨Meme⟩ (see Figure 1) refers to the set of
all possible expressions of the given structure. Memes, in
this model, are thus represented by a list of expressions. If
an agent is infected with a particular meme, we interpret
this to mean that they believe each of the expressions
composing that meme. An expression in this model can either
be a proposition, a comparison statement, a combination of
other expressions (either a conjunction or disjunction), or a
negation of an expression. Numerical values can be a nu-
merical variable (e.g. “Months since COVID-19 recovery”),
a number literal (e.g. “5” or “40%”), a conditional probability
statement, or a mathematical expression combining other
numerical values using the “+” or “-” operators—basically
any expression that evaluates to a number. A conditional
probability statement is made up of the probability function
P , an expression as the argument, and optionally another
expression as the condition.

B. Mutations

Once a set of memes is defined, agents can mutate them
from their original form into a different version. To do this,
we collect a set of common misconceptions that act on
the structure of a meme, transforming it. This is done by
recursively searching a meme’s nodes for a node that matches
the structure of one of the transformation rules listed in Table
I. For example, as shown in Figure 2, one misconception
could be, “There is a 40% chance applications are down”,
where the original meme was, “Applications are down at
40% of schools”. This change could be caused by the “Loss
of Condition” transformation rule.

The “Exaggeration” rule is based on the idea that numbers
are often communicated imprecisely, which can lead to the
recipient of a meme interpreting an exaggerated version of
the probability of an event occurring. For instance, given the



Name Transformation Example
Exaggeration p =⇒ 1

1+
p

1−p
−2 (P(“Getting a computer virus” | “Is a Linux

OS”) = 0.1) =⇒ (P(“Getting a computer
virus” | “Is a Linux OS”) = 0.0122)[16]

Loss of Context ⟨Meme⟩ =⇒ ⟨Meme⟩ \ ⟨BinExp⟩i (“The Earth has experienced higher CO2 levels
before”,“The Earth has never experienced such
a sudden rise in CO2 levels”) =⇒ (“The Earth

has experienced higher CO2 levels before”)
Reverse Implication P(a|b) =⇒ P(b|a) P(“Having low cholesterol” | “Having cancer”) = n =⇒

P(“Having cancer” | “Having low cholesterol”) = n
Faulty Negation P(a|¬(b)) =⇒ P(¬(a)|b) P(“Being reinfected with COVID-19” | ¬(“Months since

recovery” > 3)) = n =⇒ P(¬(“Being reinfected with
COVID-19”) | (“Months since recovery” > 3)) = n [5]

Common Cause P(a|c) ⟨CompOp⟩1 x, P(b|c)
⟨CompOp⟩2 y =⇒ P(a|b) ⟨CompOp⟩1 x

P(“Ice cream sales are up” | “It is summer”) = n,
P(“Drowning rates are up” | “It is summer”) = n =⇒

P(“Ice cream sales are up” | “Drowning rates are up”) = n
Loss of Condition P(a|b) =⇒ P(a) P(“The amount applications are down” > 0 |

“We are analyzing one school”) =⇒ P(“The
amount applications are down” > 0) [5]

Probability Collapse P(a > 0) = n =⇒ a = n P(“The amount applications are down” > 0) = 40%
=⇒ “The amount applications are down” = 40% [5]

TABLE I
MEME TRANSFORMATION RULES

meme “There is a small probability of a computer running
Linux getting a virus”, the meme might mutate to “There is
a very small probability of a computer running Linux getting
a virus”.

The “Loss of Context” rule simply states that often not all
of the information is communicated properly. While the re-
maining information might still be true, without surrounding
context it could lead to incorrect action. This is demonstrated
by the meme, “The Earth has experienced these levels of
CO2 before, but never this fast of a rise in CO2,” becoming,
“The Earth has experienced these levels of CO2 before,” from
which one might conclude that we need not be concerned
about climate change.

The “Reverse Implication” rule is based on confusing
which direction a condition points for two events that occur
together. For instance, the meme, “People who have cancer
also tend to have low cholesterol,” might be misunderstood as
“People who have low cholesterol also tend to have cancer”.

“Faulty Negation” occurs when an unwarranted conclusion
is made that if a condition is negated, then so must the main
argument of a probability expression. This can be seen in
the meme, “You are unlikely to be reinfected with COVID-
19 if it has been less than three months since recovering
from a previous infection,” becoming, “You are likely to
be reinfected with COVID-19 if it has been three or more
months since recovering from a previous infection.”

“Common Cause” is a fallacy that occurs when two events
share a common condition, but one is assumed to be the
cause of the other. A classic example of this is that both
ice cream sales and drowning rates are up during summer
months, which might be interpreted to mean that ice cream
sales cause drowning.

“Loss of Condition” was demonstrated above with the
example of admissions, but that misconception can be taken
further with “Probability Collapse”, which transforms a
probability that some value a is greater than 0 is n, into

simply that the value of a is n. For instance, we can take
the meme that, “The chance that applications are down is
40%,” and transform it further into, “Applications are down
by 40%”.

C. Contagion Model and Variants

To simulate the spread of the meme, an undi-
rected graph with fixed topology is used. In particu-
lar, we used the Infect Dublin data set [17]. More
information on the properties of Infect Dublin can
be found at https://networkrepository.com/
ia-infect-dublin.php. Each node of the graph can
either hold no meme, or some variant of a meme. An original
meme is given to a starting node and the simulation moves
on to the next time step. At each time step, each node Ni

that does not hold a meme will check its predecessors for
memes, and will select the most common meme variant
Mmost−common among them (ties are broken arbitrarily).
The node Ni will then have some probability padopt of
adopting the meme Mmost−common, which it will hold from
then on. However, if Mmost−common is chosen to be adopted,
there is a probability pmutate that an attempt to mutate
Mmost−common will be made. If the attempt is successful,
Ni will instead adopt the mutated version. Any number of
mutated variants can be present in the network at any given
time, provided at least one node holds that meme. Each
node can only hold up to one variant at a time. The hyper
parameters padopt and pmutate are the same for every node.
In our simulations, we give them the values 1.0 and 0.2,
respectively.

The process for attempting a mutation is to shuffle all
of the available transformations described in Table I, and
sequentially test to see if the transformation matches the
structure of the meme. The first transformation that matches
is used and the mutation succeeds. If no transformation
matches the meme, the mutation fails.



⟨Meme⟩ ::= ‘(’⟨BoolExp⟩⟨FactList⟩‘)’

⟨FactList⟩ ::= ⟨BoolExp⟩⟨FactList⟩
| ⟨empty⟩

⟨BoolExp⟩ ::= pb
| ⟨Statement⟩
| ⟨BoolBinExp⟩
| ⟨NotExp⟩

⟨Statement⟩ ::= ‘(’⟨NumExp⟩⟨CompOp⟩⟨NumExp⟩‘)’

⟨BoolBinExp⟩ ::= ‘(’⟨BoolExp⟩⟨BoolBinOp⟩⟨BoolExp⟩‘)’

⟨NotExp⟩ ::= ¬‘(’⟨BoolExp⟩‘)’

⟨NumExp⟩ ::= pn
| ⟨NumLiteral⟩
| ⟨Probability⟩
| ⟨NumBinExp⟩

⟨Probability⟩ ::= P‘(’⟨BoolExp⟩( | ⟨BoolExp⟩)‘)’

⟨NumBinExp⟩ ::= ‘(’⟨NumExp⟩⟨NumBinOp⟩⟨NumExp⟩‘)’

⟨NumLiteral⟩ ::= n
| p%

⟨CompOp⟩ ::= ‘=’
| <
| >
| ≤
| ≥

⟨BoolBinOp⟩ ::= ∨
| ∧

⟨NumBinOp⟩ ::= +
| -

Fig. 1. Grammar for Memes. This context-free grammar lays out the rules
for the structure of a Meme in our model. ‘::=’ can be read as ‘is constructed
from’ or ‘has the constituents’. ‘|’ can be read as ‘or’. A < NumExp >,
as shown in the grammar, is either a numeric proposition (such as ”the
number of applications”), a < NumLiteral >, a < Probability >, or a
< NumBinExp >. A < Meme > is made up of a < BoolExp > and
a < FactList > surrounded by parentheses. A meme can be generated
by starting with a < Meme > node and replacing all bracketed items
with one of their options for constituents and repeating until there are no
bracketed items remaining.

We make several assumptions about the agents in the
network — represented by the graph nodes — in order to run
this simulation. Each agent acts exactly the same as all other
agents in the way they receive and propagate memes. Each
agent only has access to memes held by other agents they
are connected to. Each agent can only hold one meme, and
differing memes have no interactions other than competition
to spread through the network.

There are a number of parametric variations on the base
contagion model that were also tested. These parameters are
listed below.

A COMPLEXITY AFFECTS SPREAD: If set, this param-
eter makes more complex memes less likely to spread to

Meme

BoolExp

40%=Probability

BoolProp2|Statement

0>BoolProp1

⇓
Meme

BoolExp

40%=Probability

Statement

0>BoolProp1

Fig. 2. Representation of Meme Structure. This example shows the
representation of an initial meme in a tree structure and a potential mutation
into a different meme. In this case, BoolProp1 is the proposition describing
“the amount international applications are down” and BoolProp2 is the
proposition that “only one school is being examined.” The mutation removes
this second proposition, implying that applications are down at all schools.

their neighbors. A meme’s complexity is calculated by
totalling up the number of literals and propositions in
the meme. The probability of the meme being adopted
padopt is divided by the complexity of the meme.

B CAN CHANGE MIND: When set, nodes can be rein-
fected. In other words, nodes that already hold a meme
still check their predecessors for memes. The node
has a probability pchange−mind to adopt the new most
common meme among its predecessors. All nodes have
the same value for pchange−mind, and in our simulations
we set this value to 0.1.

IV. RESULTS

The purpose of our model is to simulate real world
meme mutation and spread, thereby providing a framework
to conduct research on the spread of misinformation. Our
novel approach to meme representation creates opportuni-
ties to study the mutation of information and its natural
propagation through a social network. Results thus far have
been promising, proving a model that is both intuitive and
accurate to previously studied network dynamics. Through
manipulating the parameters, various real-world phenomena
can be simulated. These include the rapid spread of simple-
to-understand but false information, the formation of echo
chambers, and an increased rate of spread due to influential
individuals. As our model manipulates both the information



Fig. 3. Domination by Simple Mutated Memes. This graph shows
the spread of memes through a network over time. This simulation was
generated by allowing the complexity of the meme affect its spread. The
simulation ran until it reached a steady state, which in this case took 14 time
steps. In this and all following figures, red is used to represent the combined
set of all mutated variants, while blue represents only the original variant.
The mutated memes dominate the network, as they are simpler and thus
have a higher infection probability than the original meme. This propagation
closely mimics generic epidemic spread, thus showing the efficacy of our
model.

being propagated and the nature of the propagation, there are
still many unexplored possible applications.

A. Rapid Spread of Simplified Memes

With the “Complexity Affects Spread” parameter on, less
complex memes tend to spread much faster. This is due
to the probability of adoption at each time step being
inversely proportional to the complexity of the meme. As
seen in Figure 3, this leads to the mutated, simplified memes
completely taking over, regardless of whether nodes can
be reinfected. This is closely mirrored in reality, where
nuanced, yet true, memes are often distilled into simple,
though distorted, memes.

Our model allows for results like this to be generated
organically based on the natural mutations and spread of
memes. Without a model like ours, researchers would need to
use high level abstractions to reproduce similar phenomena.
Because of the hierarchical structure of our meme model, it
is simple to calculate the complexity of a meme, which can
then be used to determine the rate of spread of that meme.

B. Formation of Echo Chambers

When memes are able to infect individuals that were
previously infected by a different meme, echo chambers
(groups of individuals that all hold the same beliefs) often
form. This may manifest in a variety of ways, with the most
common being the formation of isolated but well insulated
groups, as shown in Figure 4. Although these groups are
small compared to their opposition, they self reinforce to
the extent that they become stable. Another manifestation of
echo chambers is the complete polarization of the network.
In these cases, two distinct groups form in the network, one
for the original meme and one for the mutated memes. Any

Fig. 4. Small, Stable Echo Chambers. This network was produced while
allowing individuals in the network to be infected by a new meme after
having already been infected. An echo chamber formed in which a group
continued to hold to the original meme (blue) despite being surrounded
by actors with mutated memes (red). This stayed relatively stable until it
reached 40 time steps, at which point the simulation ended.

individual that has beliefs contrary to the majority in either
group is rapidly converted, resulting in each group purely
consisting of one meme.

C. Influential Actors

Within social networks, some actors have significantly
more connections than most others (high degree vertex).
These influential actors, or influencers, have a tremendous
impact on the final result of the network. The meme that
infects an influencer first has a large advantage over its
competition, typically taking over the majority of the network
unless the other meme also infects an influencer within a
short time frame. A meme that is unable to reach a major
influencer in time is generally either eliminated or develops
into small echo chambers. As shown in Figure 5, allowing
true memes to reach an influencer early in the simulation
minimizes the spread of mutated variants in the network.

D. Effect of Allowing Opinion Changes

When opinions are not allowed to change after initial
infection by a meme, the model rapidly reaches a stable
point. However, when using an option to allow individuals
to change their minds as shown in Figure 6, there is a more
dynamic competition between the different memes present in
the network. An equilibrium is reached where the network is
divided between the different memes and individuals swap
between them. This is related to the echo chambers seen in
Figure 4 in that the groups with the same meme are relatively
stable over a period of time, but have members at the fringes
that will occasionally swap.

V. CONCLUSION

In this paper, we demonstrate the efficacy of our mu-
table meme model. Using our model, we can observe the
spread of memes in a social network and how mutations
to memes can occur and spread in such an environment.
By allowing simpler memes to have a higher likelihood of
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Fig. 5. Influencers. This graph shows the result of allowing the original
meme to start on the most influential node in the network. Although the
mutated memes spread more quickly than the original meme due to their
increased simplicity, the advantageous starting position of the original meme
allows it to dominate. This simulation ran for 40 time steps.

Fig. 6. Opinion Change. This graph was produced by allowing individuals
in the network to be infected by memes even if they have already been
infected. The simulation ran for 40 time steps. The potential for reinfection
in this experiment causes an equilibrium where individuals swap between
different memes.

spreading, mutated memes come to dominate social networks
in simulation. In addition, we observe the formation of echo
chambers centered around memes in these simulations. These
phenomena and others discussed in this paper give us insight
into the spread and behavior of misinformation in social
networks.

While this model is effective in demonstrating meaningful
mutations, it has limitations. Because of the model’s focus
on logical structure, many potential semantic mutations are
infeasible. For example, in the meme “There is a chance of
catching a cold this winter,” mutating the season “winter” to
“spring” is impossible with our current model. We also have
no way to model the effect such a mutation would have on
a meme’s potential propagation.

In addition to the lack of semantic representation in our
meme model, our process is limited by the homogeneity of

the population in the network. Due to the lack of detail
in each actor in the network, our simulations ignore the
potential effect each actor’s internal state may have on the
spread of information.

At the moment, our model is a proof of concept. In future
research, we plan to address these limitations. Specifically,
we are working to represent an internal “opinion” state of
each actor. This opinion will affect an individual’s likelihood
to adopt a meme based on the similarity of the meme and
the opinion.
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