
A Matrix Inverse Algorithm based on Bi-Directional Graph Search

Gabriel M. Perry, Micah H. Olson, David Grimsman, and Sean Warnick

Abstract— We present an algorithm to estimate a single entry
of the inverse of a matrix; it is derived using a bidirectional
search on a flow graph. This method has immediate application
in analyzing dynamical system destabilization attacks, where
previous research quantifies system node-to-node vulnerability
in terms of a matrix inverse. We present evidence that the
expected ∞-norm error, the number of floating point oper-
ations, and the number of unique entries used to complete
the computation are comparable to existing row or column
approximation methods.

I. INTRODUCTION

This work is focused on computing a single entry from
the inverse of a matrix. Such computations are useful in
systems analysis, especially in signal gain between specific
nodes; it is also necessary for analyzing system vulnerability
to destabilization attacks [1]. In most matrix applications (as
when solving systems of equations), at least an entire row
or column is needed, so few existing methods improve the
case where only a single entry is needed from the inverse
matrix. To approach this issue, we utilize an existing bridge
between the matrix inverse problem and graph theory to
frame matrix inversion as a graph search. We also address
the issue of some matrices being much too large to read
or perform operations on in a reasonable time, specifically
taking advantage of sparsity to achieve this. We then apply
the existing bidirectional search algorithm on the graph
search instance, which by reduction produces the desired
matrix inverse entry.

In Section I-A, we review existing matrix inverse methods
and their relation to graph theory. We specifically focus on
the Taylor series, which is closely related to our method. In
Sec. III, we present our method, which uses a bidirectional
search over a graph to compute a single entry of a matrix’s
inverse. In Sec. IV, we provide bounds on the complexity,
error, and memory usage of our algorithm. Memory usage
is particularly noteworthy; as the matrix/data in question is
assumed to be too large for practical use, we attempted to
reduce the scope of the computation to a relatively small
subset of the original matrix. We suggest that trade-offs exist
that utilize the memory hierarchy in more efficient ways, and
this question motivated our method.

We implemented our algorithm along with a few other
graph-based algorithms mentioned in the following section;
our code is available in [2]. We exerted little effort to opti-
mize our implementations and appreciate academic feedback
on improving our implementations.

All authors are associated with the Computer Science Department,
Brigham Young University, Provo, UT, USA. The corresponding author can
be reached at gmp99@byu.edu. This work is supported by DOE Grant
#SC0021693.

A. Related Work

Some existing algorithms that have interpretations over
signal-flow graphs similar to our method include:

1) Gaussian Elimination: Gaussian elimination is a fun-
damental method and is often introduced as a naı̈ve method
of entire matrix inversion. It runs in O(n3) time and is
often stable enough for reasonable instances, though, in
general, it is not stable. It is equivalent to the Floyd-Warshall
Algorithm, a versatile algorithm that computes net flow over
a given algebra. This is why it computes (I − Q)−1 when
using the standard plus-times algebra, as this is the net flow
across Q. Other applications include finding shortest paths in
a graph (min-Tropical algebra), transitive closures (Boolean
algebra), and regular expressions (Finite Automata) [3].

2) Taylor Series: If Q is convergent, the power or Taylor
series approximation is:

G = M−1 = (I −Q)−1 = I +Q+Q2 +Q3 + ...

Or, if we wish only to compute the jth column of M−1,

M−1
·j = e⃗j +Qe⃗j +Q2e⃗j +Q3e⃗j + ... (1)

where e⃗j is the jth column of the identity matrix. A similar
equation can be used to compute a row of the inverse. A
physical interpretation of these series is that each term Qk

measures the flow of all the paths of length k, and the sum
of all these contributions approaches the net flow through the
graph. This is a breadth-first computation since we perform
all computations of a single depth before moving on to the
next term.

3) Mason’s Gain Formula and Cramer’s Rule: Mason’s
gain formula computes a single entry of M−1 by considering
individual signal-flow paths in Q and summing them together
[4], [5], [6]. This search explores the signal-flow graph
using a depth-first search; this is equivalent to Cramer’s
Rule. Using dynamic programming to reduce redundant path
computations reproduces Gaussian Elimination.

We approach the problem of single-entry calculation
within the context of this connection to signal-flow graph
searches and design a novel algorithm based on bidirectional
search [7].

II. DEFINITIONS

A. Flow Graphs

Consider a simple directed graph H = (V,E,L) with sets
of vertices V , edges E ⊆ V × V , and edge labels L ∈ F|E|

for some field F. We denote the matrix Q as the adjacency
matrix of H: for edge (i, j) ∈ E with label l, qij := l, and
qij = 0 when (i, j) /∈ E. A path in the graph is a (possibly

infinite) sequence of edges r = (e1, e2, . . .) such that if
ek = (ak, bk) and ek+1 = (ak+1, bk+1), then bk = ak+1.
The flow along the path r is the product of the edges labels
in r, that is,

∏|r|
k=1 lk, where lk is the edge label ek.

Definition 1: For a graph H = (V,E, L) the net flow or
net transfer gij from node j to node i is the sum of the flows
across every path in H that begins at j and ends at i. More
precisely stated,

gij :=
∑

r∈Rij

|r|∏
k=1

lk

where Rij is the set of all paths that begin at j and end at i.
Denote by G = [gij] a matrix of net flows on graph H .

The previous work in [8] has established the relationship
G = (I−Q)−1, where the matrix Q is the adjacency matrix
for the signal-flow graph H (though over R, we refer to it
simply as a flow graph). Net flow is closely related to the
transfer function of LTI systems theory, where F is the set
of rational polynomials. In that case, the transfer function G
represents the system’s input-output behavior.

The key insight is that if we understand M to be I − Q
for some corresponding flow graph H , then computing M−1

reduces to computing the net flows for each pair of nodes,
i.e., by computing G. This sum of flows across all paths
is equivalent to the transfer function in LTI systems theory,
and H is analogously a signal-flow graph (or, over R, a flow
graph). Net flow is also defined in [8] as net effect.

B. Convergent Matrices

Let M ∈ Fn×n be the matrix we desire to invert. We
restrict our consideration to a specific set of matrices M
such that ∀M ∈M , the eigenvalues of M all lie within an
open half-plane not containing zero.

Remark 1: Using a precomputation scale factor αM to
achieve the convergence criteria for Q = I − αM , it is
necessary and sufficient that the eigenvalues of M be strictly
contained in some open half of the complex plane not also
containing the origin. Noting that (I − Q) = αM , so
M−1 = α(I −Q)−1, we see that such a scale factor α has
the effect of shrinking and rotating the eigenvalues down to
the open disk centered at 1. As ρ(I−αM) = ρ(Q) < 1, Q is
convergent. Necessity is obvious as no scaling or rotation can
place all eigenvalues in an open half-plane unless they began
in one. We note that this precomputation scaling requires us
to know a priori an upper bound on the eigenvalues of M ,
as well as the open half-plane containing them. Also, scaling
affects the numerical error of inversion algorithms.

The above remark implies that M includes positive and
negative definite matrices, as well as Hurwitz matrices (for
stable CT LTI systems). Convergence is accelerated if the
eigenvalues of Q are close to zero, corresponding to αM
being close to the identity matrix. This includes strongly
diagonally dominant matrices with diagonal entries relatively
close to one.

C. Epsilon Horizons

A natural method for approximation is to round insignif-
icant terms to zero. For example, one could approximate
(1) by rounding each term in the sum before continuing. In
the context of flow graphs, this is equivalent to limiting the
search to paths with flow above some tolerance ε > 0.

Definition 2: For a node j ∈ V , the outgoing ε-horizon
is the subset of nodes i such that gij > ε. The incoming
ε-horizon is the subset of nodes i such that gji > ε.

Fig. 1. The ε-horizon of a companion graph H with adjacency matrix
Q = I − M . Beginning at source j, we follow the network flow out to
magnitude ε, and consider only nodes within this horizon as computationally
pertinent. If our target node i is not in the horizon, M−1

ij ≈ 0.

This truncation minimizes the exploration of paths, allow-
ing us to focus our view within some ε-horizon—ideally,
a set much smaller than all nodes (see Fig. 1). Using this
constraint provides the following bound on the number of
entries read from the matrix, assuming sparsity; a proof of
this bound is given in Appendix-A.

Theorem 1: The number of nodes p within the ε-horizon
of node j is bounded1 by:

p ∈ O

(
exp

(
ln(s) ln(ε)

ln(ρ)

))
(2)

where
• exp(x) is the exponential function ex (note that the

bound is not exponential; this notation is for brevity)
• ε ≥ 0 is the tolerance or approximation factor
• s ≥ 1 is the maximum number of nonzero entries in any

column of Q, or the maximum branching factor of the
flow graph H (or s = ∥Q∥0, the induced zero “norm”)

• ρ = ∥Q∥1 is the induced one norm of Q (this provides
an upper bound on the spectral radius ρ(Q) ≤ ρ)

A high-level understanding of (2) is that the worst-case
size p of the ε-horizon shrinks when:

• ε increases (more path truncation)
• s decreases (less branching)
• ρ decreases (paths decay quickly)

We note that correctly rejecting low-flow paths greedily (no
path later becomes significant) requires the entries of Q to
have magnitudes < 1, which is implied when ρ < 1.

1This bound is conservative and assumes that every branch produces a
new node; in real-world data, branches tend to stay within communities of
nodes, either due to limitations of physical distance or other factors, which
reduces p and thus the number of entries we must read from M .

Example 1: To illustrate this idea, consider the following
matrix M ∈ R4×4, which we desire to invert:

M =

1 −c 0 0
0 1 −b 0
0 −e 1 −a
−d 0 0 1

The corresponding signal-flow graph H (Fig. 2) has adja-
cency matrix Q = I −M :

Q =

0 c 0 0
0 0 b 0
0 e 0 a
d 0 0 0

 (3)

Fig. 2. The flow graph H given in (3). The edge labels a, b, c, d, e are
elements of some field (rational functions in LTI systems, R in this work).

The inverse of interest M−1 is:

1

det(M)

(1− be) c bc abc
dab 1 b ab
da e+ cda 1 a

d(1− eb) cd bcd (1− be)

 (4)

Where det(M) = 1− be− abcd, and the matrix is adj(M),
the adjugate or classical adjoint of M .

We use a Taylor series (1) to illustrate ε-horizons. Suppose
we wish to estimate the column M−1

·2 . We start by using the
estimate u⃗ = e⃗2 = (0, 1, 0, 0)⊤; this encodes all path flows
of length zero (the source node 2 starting at itself). We then
multiply by Q on the left, producing Qe⃗2 = (c, 0, e, 0)⊤,
which encodes flow paths of length 1 starting from source 2
(c to 1, and e to 3).

Suppose that c < ε; then we would round this path to
zero, removing node 1 from the ε-horizon and updating our
estimate Qe⃗2 ≈ (0, 0, e, 0)⊤. Our new estimate is the running
sum, u⃗ = (0, 1, e, 0)⊤. We repeat this process, giving Q2e⃗2 ≈
(0, be, 0, 0)⊤, Q3e⃗2 ≈ (0, 0, be2, 0)⊤, etc. In the limit, these
terms sum to:

u⃗→

0

1 + be+ (be)2 + ...
e+ be2 + b2e3 + ...

0

 =
1

1− be

0
1
e
0

This is exactly the estimate of M−1

·2 we desire (as c < ε,
all terms involving c are dropped). Of course, we will not
compute this exactly, as we will terminate the sums once the
working term Qie⃗j has magnitude < ε.

Algorithm 1 Bidirectional Matrix Inversion
Require: A matrix M satisfying the mentioned assumptions

1: indices of the target entry (j, i) of M−1,
2: cutoff tolerance ε > 0.
3: procedure BIDIRECTIONALINVERSE(M, j, i, ε)
4: Set 0 < εsink, εsource < ε s.t. εsinkεsource = ε
5: s⃗, w⃗ ← e⃗i
6: inHoriz ← set of indices
7: loop while ∥w⃗∥ > εsink ▷ Find the sink horizon
8: w⃗ ← (I −M)⊤w⃗
9: s⃗← s⃗+ w⃗

10: round entries of w⃗ below ε to 0
11: end loop
12: inHoriz ← non-zero indices of s⃗
13: u⃗, w⃗ ← e⃗j
14: loop while ∥w⃗∥ > εsource ▷ Find the source horiz.
15: w⃗ ← (I −M)w⃗
16: u⃗← u⃗+ w⃗
17: round entries of w⃗ below ε to 0
18: end loop
19: loop while ∥w⃗∥ > ε ▷ Continue in the sink horizon
20: w⃗ ← (I −M)w⃗
21: u⃗← u⃗+ w⃗
22: round indices of w⃗ not in inHoriz to 0
23: round entries of w⃗ below ε to 0
24: end loopreturn u⃗i

25: end procedure

III. BI-DIRECTIONAL SEARCH

In this section, we present our main result: the Bi-
Directional Inverse (Alg. 1) for computing a single entry
of a matrix inverse. We begin with an example; see Fig. 3
and its caption for an illustration.

Example 2: We use the same matrix M from Sec. II-
C. Suppose that we wish to estimate row 3, column 2 of
M−1 (the term (e + cda)/det(M)). We begin at node
3 and execute a priority BFS (rounded power series) on
the reverse graph (using the different ε values as noted
earlier), producing an estimate of row 3. We start with
w⃗ = (0, 0, 1, 0)⊤, iteratively multiplying by Q⊤, adding the
new term to s⃗, and rounding w⃗’s entries. We produce the
row vector:

s⃗ = (0, [e+ ebe+ e(be)2 + ...], [1 + be+ (be)2 + ...], 0)

from which c is absent due to our construction c < ε used in
Example 1, and (for illustrating this search) we now assume
a < ε, so a is also omitted. From this estimate, we see
that only nodes 2 and 3 will be within the in-horizon of the
destination node 3 (we otherwise ignore the sum’s values).

We then execute the same search flowing forward from
node 2, starting with u⃗ = e⃗2 as in Example 1. We flow until
∥w⃗∥ reaches the modified threshold εsource, at which point
we round all values except at nodes 2 and 3 to zero (as
these nodes are in the in-horizon of the sink node 3). We
continue the computation of the forward flow, rounding not

only the entries below ε but also all the entries not in node
3’s in-horizon. For this small example, we end with the same
estimate as in Example 1, but in general, the estimates may
differ.

Fig. 3. An illustration of the two ε-horizons of Bidirectional Inverse. The
stages (loops) of the algorithm are: 1) we find all nodes within the in-horizon
of the sink i (right oval), 2) we explore and compute all paths within the
out-horizon of source j (left oval), and 3) once we reach the edge of that
horizon, we only continue computations within the in-horizon of i.

To clarify, when computing M−1
ij , we first approximate the

ith row of M−1 using the relatively large εsink as our vector-
term-rounding threshold; we still use ε for intermediate
rounding. The value εsink = εsource =

√
ε minimizes the

expected number of nodes in the union of both horizons. We
mark all non-zero entries of the row i estimate as “within”
i’s in-horizon by saving them in a set.

We then perform the second loop, a power series estimate
for the jth column of the forward flow network starting from
the source j, using the final threshold ε for intermediate entry
rounding, but εsource on the current vector term to break.

The third loop begins once the current current vector term
w⃗ reaches magnitude εsource. We truncate all entries of u⃗
not in the εsink in-horizon of node i We only continue
computations within the in-horizon, as only these paths will
reach the sink with a value greater than ε.

IV. COMPLEXITY AND ERROR

We ran our method in a Python script [2] for matrices of
various sizes and sparsities. We generated matrices using a
spectral radius ρ(Q) = 0.7 and sparsities s = 2, 5, 20, 500.
We used the optimal εsource = εsink =

√
ε. Note that the

standard power series for columns is the edge case εsource =
ε, and for rows it is εsink = ε.

A. Error

Theorem 2: Assuming balanced source and sink εs, the
error of Alg. 1 is bounded by (using the induced 1-norm):

∥err∥1 ≤ ∥M−1∥1 ·
(
ln ε

ln ρ
sε
√
p+

ln ε

2 ln ρ
ρ
√
ε+ ρε

)
where the actual column M−1

·j = u⃗+err. Note that ∥M−1∥1
is highly sensitive to a high conditioning number. Also note
the difference between the horizon sizes p and the parameter
ρ from (2). See Appendix-B for the proof. See also Fig. 4.

B. Runtime

For s > 3, the bidirectional inverse consistently uses twice
the number of FLOPs used in the power series with ε-horizon
rounding. Both approach a maximum number of required

Fig. 4. Our method consistently has on average half the absolute error
compared to a strictly forward computation, though these simulations
suggest that this may improve with larger n (we were unable to invert
matrices larger than this in a reasonable amount of time). Note that a simple
power series has the best accuracy, as it uses less rounding. Note also that
our method only measures the error of the single entry |M−1

ij − u⃗i|, while
the others measure the maximum error of the entire column ∥M−1

·j − u⃗∥∞.

FLOPs for a given s, whereas the power series without an
ε-horizon requires FLOPs proportional to n. See Fig. 5.

The maximum number of nodes within the union of the
horizons is ∈ O(

√
p), where p is the edge-case ε-horizon

bound in (2). This bound is easily derived by substituting√
ε into (2) for each horizon, using exponent and logarithmic

identities to move the 1/2 from the ε out to surround the
entire expression, and noting that the two horizons are at
worst disjoint. We can use (2) in this generalization because
in the worst case, bidirectional inverse algorithms do not
utilize intermediate rounding (which is always ε), so using
only the terminal rounding (at

√
ε) gives the desired bound.

When the convergence criteria are met, the power series
with rounding achieves a time complexity of O(slp), where
l, the number of iterations, ≤ ln ε

ln ρ (see Appendix-A), and s
and p are consistent with (2). Each of the l matrix-vector
multiplication takes O(sp) time using adjacency lists (since
u⃗ has at most p non-zero entries and each column of Q =
I−M has at most s+1 non-zero entries). This implies that
the space complexity of the bidirectional search is O(sl

√
p).

C. Memory Hierarchy

Decreasing the number of unique columns requested from
memory could provide additional computational speed, due
to the memory hierarchy in modern computers; this is due to
more opportunities for cache hits, requiring fewer slow disk
retrievals. This improvement in space complexity may reduce
the number of entries of M we need to read from memory,
which could lead to more cache hits and fewer disk fetches
during execution. See Fig. 6.

V. CONCLUSION

We used an existing relationship between matrix inversion
and network flow to transform a bidirectional search into an
approximate algorithm producing a single entry of a matrix
inverse. This uncovered a subset of the corresponding flow
graph, an epsilon horizon, that contains the most important

Fig. 5. From the bottom, FLOPs used when s = 2, 5, 20, 500. Note the
behavior of s = 500, achieving its maximum near n = 500. Our method
consistently uses twice the number of FLOPs for each n, s combination,
with the standard deviation decreasing as s increases. Actual runtime and
FLOPs were correlated with r2 = 0.99578.

Fig. 6. The number of columns actually requested from memory to execute
Alg. 1, not including duplicates. Sparcities shown are, from the bottom,
s = 2, 500, 5, 20. Note that s = 500 requested fewer columns than the
others. Also, note that the power series (BFS) without rounding used all
columns throughout this size range.

entries for the inverse computation (according to some tol-
erance ε). We showed that our algorithm generally requires
reading fewer entries of the original matrix to perform its
computations, which may improve real-world performance
by reducing cache misses during execution.

A. Future Work

We wish to analyze various matrix preconditioning, such
as using D-scaling (similar to the structured singular value
bound in [9], [10]). This would immediately extend the
set M to include all strictly diagonally dominant matrices,
perhaps more.

We are also interested in using the precomputed net flow
from each node in the sink-horizon to the sink. Currently,
these values (from loop one) are thrown out, and only the
set of nodes is used to continue the computation, but one
could imagine a scheme using these known net-flow-to-sink
values as soon as any forward flow reaches the node.

We could consider an extension computing multiple en-
tries, where all source and sink nodes contribute a

√
p ε-

horizon, and computations are performed efficiently for all
such flow paths within the union of all these horizons.

There are also other algorithms for traversing flow graphs;
for example, it may be useful to consider the necessary
conditions in certain data for H to be planar or obey the
triangle inequality. This would open the possibility of using
some heuristic in an A∗ search [11] of the flow graph to
prioritize only the most significant flow paths in H , providing
a worse but faster estimate of the inverse entry.

A practical extension of bidirectional inversion is in es-
timating signal transfer in dynamical systems, which is one
focus of our research lab. This would use matrices over the
field of rational functions of a single variable, instead of the
real numbers. Other algebraic semirings may be of interest
to other disciplines; these connections would be similar to
those explored in [3], and we are interested in physical
interpretations of these flow computations.

REFERENCES

[1] V. Chetty, N. Woodbury, E. Vaziripour, and S. Warnick, “Vulnerability
analysis for distributed and coordinated destabilization attacks,” in
53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
511–516.

[2] G. Perry and M. Olson, “Colaboratory,” 2024, verified: 2024-02-01.
[Online]. Available: https://colab.research.google.com/dri
ve/1jiLIK1T8VcDwLznHHlevgNggpsePX fS

[3] D. J. Lehmann, “Algebraic structures for transitive closure,” Theoret-
ical Computer Science, vol. 4, no. 1, pp. 59–76, 1977.

[4] C. Coates, “Flow-graph solutions of linear algebraic equations,” IRE
Transactions on circuit theory, vol. 6, no. 2, pp. 170–187, 1959.

[5] G. Samuel, M. Pollatschek, and E. Kehat, “Inversion of sparse ma-
trices by a method based on graph theory,” Computers & chemical
engineering, vol. 11, no. 6, pp. 763–768, 1987.

[6] S.-L. Jeng, R. Roy, and W.-H. Chieng, “A matrix approach for
analyzing signal flow graph,” Information, vol. 11, no. 12, p. 562,
2020.

[7] I. Pohl, “Bi-directional search, machine intelligence 6,” Edinburgh
University Press, Edinburgh, vol. 127, p. 14, 1971.

[8] C. A. Johnson, “Net path and net effect of linear networks with
dynamics,” Ph.D. dissertation, Brigham Young University, 2017.

[9] J. Doyle, “Analysis of feedback systems with structured uncertainties,”
IEE Proceedings D Control Theory and Applications, vol. 129, no. 6,
p. 242–250, Nov 1982, funding by Honeywell Incorporated.

[10] A. Packard and J. Doyle, “The complex structured singular value,”
Automatica, vol. 29, no. 1, pp. 71–109, 1993. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/000510989390175S

[11] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

APPENDIX

A. Proof of Theorem 1

We first find a bound on the length l of the longest path
from a node in Q to its ε-horizon. We observe that the
longest possible path occurs when the flow does not spilt
(i.e. columns have one nonzero entry), and ends after l edges
when the path flow is strictly below ε. This means that all
paths having a flow above ε (contained within the ε-horizon)
must have a bounded path length (recall ρ < 1):

ρl > ε =⇒ l <
ln ε

ln ρ
(5)

We also know that the maximum number of nodes in the
ε-horizon is bounded by an exponentially branching flow

using all s outgoing edges:

p ≤ 1 + s+ ...+ sl ∈ O(sl) =⇒ p ∈ O(s
ln ε
ln ρ) (6)

as O(sl) is a subset of (6) due to the bound (5). Using some
exponent and logarithm identities gives (2). This bound is
highly conservative, as l will decrease when paths branch.
This path length l is the number of iterations of Alg. 1. ■

B. Proof of Theorem 2

We begin by partitioning the exact solution (1) (noting
M = I −Q) into three stages of error-introduction:

M−1e⃗j = e⃗j +Qe⃗j +Q2e⃗j + ...

= e⃗j +

j∑
k=1

Qke⃗j +

i∑
k=1

Qk+j e⃗j +

∞∑
k=1

Qk+j+ie⃗j

The three sums correspond with the second and third loops
and remainder after termination of Alg. 1, respectively. We
overload j to denote the longest path from the source j to its
out-horizon (i.e. j is the number of iterations of loop 2). We
also overload i in this proof to mean the number of iterations
performed in loop 3. Throughout this proof, we are careful
to distinguish vectors (lowercase) from matrices (uppercase).

We will rewrite the exact partitioned power series accord-
ing to the terms kept and those thrown out due to rounding
and path truncation. We define the following recurrence
relations:

q(0,0) = e⃗j , δ
(0,0) = 0⃗

Qq(0,k−1) = q(0,k) + δ(0,k) (7)

Qq(k−1,j) = q(k,j) + δ(k,j) + Q̃q(k−1,j) (8)

Where δ contains all the entries < ε, which are rounded
after multiplying any q by Q on the left at each iteration.
Additionally, Q̃ is the complement of the matrix Q restricted
to the sink horizon (i.e. the entries Qab ∀a, b ∈ the sink-
horizon are set to zero, or Q = Q|sink + Q̃). This allows us
to rewrite each term as:

Qke⃗j = q(0,k) +

k∑
n=1

Qk−nδ(0,n) (9)

Qk+j e⃗j = q(k,j) +

j∑
n=1

Qk+j−nδ(0,n)

+

k∑
n=1

Qk−nδ(n,j) +

k∑
n=1

Qk−nQ̃q(n−1,j) (10)

Qk+j+ie⃗j = Qkq(i,j) +

j∑
n=1

Qk+j+i−nδ(0,n)

+

i∑
n=1

Qk+i−nδ(n,j) +

i∑
n=1

Qk+i−nQ̃q(n−1,j)

(11)

Where the q terms will become part of the estimate u⃗, the
δs represent the rounded error, and the terms involving Q̃
represent a truncation of paths outside the sink horizon. This
equivalence is easily shown by induction via multiplying the

kth term on the left by Q and expanding each expression
using (7) for (9), and using (8) for (10). The final set of terms
(11) is simply the final term in (10) (k = i) multiplied by
Qk on the left. The estimate u⃗ with error err is expressed by
collecting like terms (we reindex to combine term families):

u⃗ = q(0,0) +

j∑
k=1

q(0,k) +

i∑
k=1

q(k,j)

err =

∞∑
m=0

j∑
n=1

Qmδ(0,n) +

∞∑
m=0

i∑
n=1

Qmδ(n,j)

+

∞∑
m=0

i∑
n=1

QmQ̃q(n−1,j) +

∞∑
n=1

Qnq(i,j) =

M−1

(
j∑

n=1

δ(0,n) +

i∑
n=1

δ(n,j) + Q̃

i∑
n=1

q(n−1,j) +Qq(i,j)

)
Separating indices and using any sub-multiplicative (in-

duced) norm, we can bound the magnitude of the error:

∥err∥ ≤ ∥M−1∥ · (∥w⃗∥+ ∥⃗x∥+ ∥⃗y∥+ ∥⃗z∥)

∥w⃗∥ ≤
j∑

n=1

∥δ(0,n)∥, ∥⃗x∥ ≤
i∑

n=1

∥δ(n,j)| ∥

∥⃗y∥ ≤ ∥Q̃∥
i∑

n=1

∥q(n−1,j)∥, ∥⃗z∥ ≤ ∥Q∥ · ∥q(i,j)∥

Where ∥M−1∥ is the norm of the inverse of M , equal to
the condition number κ divided by ∥M∥. The rounded δ
terms are defined to only have entries smaller than ε. We use
Thm. 1 to compute p and the size of each horizon according
to their respective εs (εsource = εq , εsink = εr, where q, r ≥
0, q + r = 1). The source-horizon has at most pq non-zero
entries and the sink has at most pr. As each member of the
horizon connects to at most s nodes, and the rounded terms
are external to the horizon, w⃗ and x⃗ are bounded by:

∥w⃗∥1 ≤ jpqsε, ∥⃗x∥1 ≤ iprsε

For y⃗, note that Q̃ contains a strict subset of the entries of
Q. As ρ(Q) ≤ ρ = ∥Q∥1 < 1 (to ensure convergence), the
entries of Q in each column must have magnitudes summing
to no more than ρ < 1. This fact is also true for any sub-
matrix of Q; in particular, ∥Q̃∥1 ≤ ρ. Additionally, by the
definition of the transition from loop 2 to loop 3, ∥q(n,j)∥ ≤
ϵq ∀n ≥ 1. Similarly, ∥q(i,j)∥ ≤ ε. This provides a final
bound:

∥⃗y∥1 ≤ iρεq, ∥⃗z∥1 ≤ ρε

Combining these gives the general bound. Note that i and
j represent the lengths of paths used in loops 2 and 3 of the
algorithm, so we can bound them using l in (5) (j = ql, i =
rl). If we also assume that q = r = 0.5, the error bound
simplifies to Thm. 2. ■

As we see, the accuracy of the algorithm depends on the
conditioning of M (equivalently, when any eigenvalue of Q
is close to one). Also note that this is a bound on the error
of the entire column ∥u⃗−M−1

·j ∥1, and not only on the entry
|u⃗i −M−1

ij |, so it is conservative for s > 1.

