Press Sheet Optimization for Open Loop Control of Industrial Scale Gang-Run Printing

Daniel Fullmer
Advisor: Sean Warnick

IDEA Labs
Information & Decision Algorithms Laboratories
Printed Products
Press Sheets
Press Sheet Templates

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>19</td>
<td>28</td>
<td>37</td>
<td>46</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>11</td>
<td>20</td>
<td>29</td>
<td>38</td>
<td>47</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>21</td>
<td>30</td>
<td>39</td>
<td>48</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>22</td>
<td>31</td>
<td>40</td>
<td>49</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>23</td>
<td>32</td>
<td>41</td>
<td>50</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>24</td>
<td>33</td>
<td>42</td>
<td>51</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>25</td>
<td>34</td>
<td>43</td>
<td>52</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>17</td>
<td>26</td>
<td>35</td>
<td>44</td>
<td>53</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>54</td>
<td>63</td>
<td></td>
</tr>
</tbody>
</table>
Press Sheet Templates

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>29</td>
<td>38</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
<td>28</td>
<td>37</td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td>31</td>
<td>40</td>
</tr>
<tr>
<td>14</td>
<td>23</td>
<td>32</td>
<td>41</td>
</tr>
<tr>
<td>15</td>
<td>24</td>
<td>33</td>
<td>42</td>
</tr>
<tr>
<td>16</td>
<td>25</td>
<td>34</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>26</td>
<td>35</td>
<td>44</td>
</tr>
<tr>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
</tr>
</tbody>
</table>

3/19/2013
Press Sheet Templates
Problem Description

- Minimize the total cost of production
- Choose press sheets from press sheet templates
- Choose which orders to print on each press sheet
- Choose presses to print each press sheet
- This decision is made daily.
- Products that are due today must be printed.
- Products not due today may optionally be printed.
Costs

- Paper Cost
- Plate Cost
- Ink Cost
- Press Time / Press Labor Cost
- UV Spot and Full Cost / UV Labor Cost
- Cutting Time / Cutting Labor Cost

- Cost tradeoffs due to press sheet type, press, quantity, labor, etc.
Digital Printing
Offset Printing
Offset Printing

The Offset Process

- Tray with ink
- Ink is distributed evenly
- Applied to the plate
- Offset to blanket
- Applied to the paper

Diagram:
- Ink rollers
- Water rollers
- Plate cylinder
- Offset cylinder
- Impression cylinder
- Paper
- Water
UV Coating
Cutting
Cutting Time
Order Placement Complexity

• Orders can be placed multiple times on each press sheet.
• Orders can be split across multiple press sheets
• Orders can be “over-printed”
• 1-sided orders may be placed on 2-sided press sheets
• “UV Full” coated orders may be placed on “UV Spot” press sheets
Problem Formulation

\[
\begin{align*}
\min_{b_d, b_d', b_d''} & \sum_{p \in P} \sum_{a \in A} \sum_{m \in M_p} \sum_{q \in Q} c_{p,a,m,q} b_{p,a,m,q} \\
& + \sum_{t \in T} \sum_{a \in A} \sum_{q \in Q} k_{l,a,q} (v_{l,a,q} + w_{l,a,q} - r_{l,a,q}) \\
\text{s.t.} & \quad v_{l,a,q} \leq r_{l,a,q} \leq v_{l,a,q} + w_{l,a,q} \quad (1a) \\
& \quad r_{l,a,q} = \sum_{q_{to} \in Q} d_{l,a,q_{to}} \quad (1b) \\
& \quad r'_{l,a,q} = \sum_{q_{from} \in Q} d_{l,a,q_{from}} q_{from} \quad (1c) \\
& \quad r''_{l,a,q} = r'_{l,a,q} - \sum_{q_{to} \in Q} d_{l,a,q_{to}} q_{to} \quad (1d) \\
& \quad + \sum_{q_{from} \in Q} \sum_{q \in Q} \left(d_{l,a,q_{from}} + d_{l,a,q_{from}} - q_{from} \right) \quad (1e) \\
& \quad r'''_{l,a,q} = \sum_{a \in A_{to}} d'_{l,a_{to}} \quad (1f) \\
& \quad r''''_{l,a,q} = \sum_{a_{from} \in A} d''_{l,a_{from}} \quad (1g) \\
& \quad r'''_{l,a,q} \leq \sum_{p \in P} \sum_{m \in M_p} a_{p,a,m,q} \quad (1h)
\end{align*}
\]

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_{p,a,m,q} \in \mathbb{N})</td>
<td>Number of press sheet template (p) to produce with attributes (a) on machine (m) at quantity (q)</td>
</tr>
<tr>
<td>(r_{l,a,q} \in \mathbb{N})</td>
<td>Number of orders of product type (t) and attributes (a) at quantity (q) to print</td>
</tr>
<tr>
<td>(r'_{l,a,q} \in \mathbb{N})</td>
<td>Number of orders of product type (t) and attributes (a) at quantity (q) to print (after overprinting)</td>
</tr>
<tr>
<td>(r''_{l,a,q} \in \mathbb{N})</td>
<td>Number of orders of product type (t) and attributes (a) at quantity (q) to print (after splitting)</td>
</tr>
<tr>
<td>(r'''_{l,a,q} \in \mathbb{N})</td>
<td>Number of slots of product type (t) and attributes (a) at quantity (q) to print (after attributes)</td>
</tr>
<tr>
<td>(d_{l,a,q_{from}} \in \mathbb{N})</td>
<td>Number of times to treat orders of product type (t), attributes (a), and quantity (q_{from}) as an order with quantity (q_{to})</td>
</tr>
<tr>
<td>(d'{l,a{to}} \in \mathbb{N})</td>
<td>Number of times to treat orders of product type (t), attributes (a), and quantity (q_{from}) as an order with quantity (q_{to})</td>
</tr>
<tr>
<td>(d''{l,a{from}} \in \mathbb{N})</td>
<td>Number of times to treat orders of product type (t), quantity (q), attributes (a_{from}) as an order with attributes (a_{to})</td>
</tr>
</tbody>
</table>

TABLE II

INTEGER DECISION VARIABLES
Mixed Integer Linear Programming

\[
\begin{align*}
\text{maximize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b \\
\text{and} & \quad x \geq 0
\end{align*}
\]

Branch and Cut
- Branching
- Cutting Planes
- Heuristics (Randomized Rounding, Neighborhood Search, etc.)

Integer Program: Branch and Bound (or Divide and Conquer)
Methods

- Used Gurobi Integer Linear Programming Solver
- Real data from a factory
- Compare with manual gang-run printing
Results

- Optimality Gap: 0-2%
- Total Cost Difference: 14%
Conclusions

• This formulation can reduce the cost of production significantly.
• Even though this problem is NP-complete, Integer Linear Programming solvers can produce good solutions quickly.

Future work:
• Use predictions of future orders to make better decisions.
• Consider the risk of failed production.