Proceedings of the 2006 American Control Conference
Minneapolis, Minnesota, USA, June 14-16, 2006

WeA16.1

A Decision-Friendly Approximation Technique for Scheduling
Multipurpose Batch Manufacturing Systems

W. Weyerman, D. West, S. Warnick

Information and Decision Algorithms Laboratories
Department of Computer Science, Brigham Young University, Provo, UT 84602
http://idealabs.byu.edu

Abstract— This paper presents a method for computing sub-
optimal schedules for certain complex manufacturing systems.
These systems are used to produce various products using a
fixed factory infrastructure. Such systems can be relatively
easy to model and simulate, but computing optimal schedules
for them is often intractable. Here, we sample a simulation of
the complex system to develop an integer program approxi-
mating the complex relationship between admissible schedules
and their overall performance, measured in terms of system
throughput. Solving this integer program yields a sub-optimal
schedule that seems close to optimal on examples.

I. INTRODUCTION

Multipurpose batch manufacturing systems (BMS) are
used by various industries to produce different products using
the same factory infrastructure. These systems are typically
modeled as a sequence of processes necessary to manufacture
the desired products. Optimally scheduling factory resources
to deliver a specified suite of products turns out to be a
hard problem. Nevertheless, understanding this problem is
necessary to quantify the capacity, and hence the profitability,
of the manufacturing system.

Early work simplified the problem by considering the
scheduling of a single machine [3], [6] and [7]. This problem
naturally generalizes to the flexible job shop which processes
several different jobs with different routes and allows for
multiple machines at any workstation. The BMS considered
in this paper differs from the job shop in that in a job
shop, a job needs processing only on a single machine in
a workstation: workstations are not allowed to have different
capacities. Nevertheless, this is a property of batch manufac-
turing. A graphical solution to the general multipurpose batch
plant is given in [9] which works well for simple examples.
However, when there are machines of drastically different
sizes or complex recipes, the problem grows to an intractable
size. Others such as [8] and [5] use a graphical representation
of a multipurpose batch plant to derive a mixed integer
linear program (MILP) formulation to determine the exact
answer to solve several objectives. However, since these
methods are exact, they are also computationally intractable

This work is supported in part by grants from ATK Thiokol,
Sandia National Laboratories, and the Office of Research and Cre-
ative Activities at BYU. Please direct comments and questions to
W. Sam Weyerman at wsweyerman@gmail.com or Sean Warnick
at sean@cs.byu.edu.

1-4244-0210-7/06/$20.00 ©2006 IEEE

for a complex manufacturing system. Two heuristic methods
of solution to the minimum makespan problem are given
in [1], the better of the two reduces decision variables
in the MILP by a linear factor. Although this does allow
for the solution of much more complex problems, it is
still difficult to compute the makespan for a manufacturing
system containing a workstation with a much larger capacity
or longer processing time than another workstation.

We develop a novel decomposition method that simplifies
the BMS to a single machine with sequence dependent
setup costs. This problem is known to be similar to the
Traveling Salesperson Problem (TSP). We propose an integer
programming formulation to then solve this simpler problem.
The reduction approximates a large optimization problem
with a significantly smaller problem. This allows for a sub-
optimal solution to the actual problem by offering a tractable
computational approach.

II. PROBLEM DESCRIPTION
A. Notation and Definitions

The fundamental processing unit in our manufacturing
system is the machine. A machine is a resource that performs
a specific job in processing various products. Common exam-
ples include mixers, extrusion presses, air dryers, heaters, etc.
Note that the resource represented by a machine has different
characteristics depending on the product it is being used
to produce. For example, when manufacturing one product,
a boiler may only process 5 kgs of material for 1 hour.
Nevertheless, while manufacturing another product, the same
boiler may process 10 kgs for 24 hours. Thus, the availability
of the resource represented by a single boiler may be very
different depending on the product to which it is assigned.

A manufacturing system, or factory, then, is a finite set of
machines F = {M;, M>, ..., M, }. Because a factory often
has multiple machines that perform the same job, we parti-
tion this set into a set of workstations, {W1, Wa,...,Wp},
where p < n. The set of workstations characterizing a
given manufacturing system define the factory’s functional
capabilities, while the machines assigned to each workstation
indicate the amount of that particular resource available at
the factory.

Any particular manufacturing system represents a collec-
tion of resources that are capable of producing a set of prod-

538

ucts P = {Py, P, ..., Py, }. Each product is characterized
by a recipe that defines a sequence of resources that are
required to manufacture the product. Specifically, the recipe
for product ¢ is a triple R; = {S;, B;,T;}, where S; is
a sequence of o; workstations, indicating the sequence of
processing steps needed to create the product i; B; is a
sequence of o; vectors, where the j** entry of the k*" vector
is a rational number, b, that indicates the batch size of product
i on machine j of workstation S;(k) during production step
k of product 7; and T; is a sequence of o; vectors, where the
jt" entry of the k*" vector is a real number, 7, indicating
the amount of time machine j of workstation S;(k) would
be occupied during production step k of product ¢. Thus,
the manufacture of product ¢ may require a sequence of
processing steps that revisits the same workstation multiple
times, leading to a total number of processing steps o; that
is larger than the total number of workstations at the factory.
Moreover, this sequence of processing steps may skip other
workstations altogether. Likewise, note that not only may
the batch sizes and processing times of the same machine
be different when processing different products, but they
may also change from one processing step to another in the
manufacture of a single product if the recipe recirculates to
the machine multiple times.

B. Operational Constraints

There are three constraints that characterize the particu-
lar class of manufacturing systems that we consider here.
These constraints are hard constraints, imposed by either the
production process itself, or by management to satisfy some
competing objectives such as safety requirements, regulatory
standards, etc. These are:

1) A machine must be loaded to capacity before it is
allowed to run. As a result, the recipes of the products
are determined such that a machine’s capacity is a
rational multiple of the previous machine’s capacity.
There can be many reasons for this kind of constraint,
including that the partially processed product will not
develop correctly except as a full batch, that polluting
emissions become unacceptable if partial batches are
processed, etc.

2) We only consider the no intermediate storage (NIS)
queuing policy. Thus any machine must wait for the
next machine to be available before it can unload
any processed product. This constraint complicates the
analysis of the factory since buffers between stages of
production are removed, thus tightly connecting the be-
havior from one machine to the next. Nevertheless, this
constraint is also fundamental to various manufacturing
systems. For example, a hot ingot” system requires
processing to occur immediately, and a waiting period
or inter-processing queue would drastically affect the
production process. Likewise, safety regulations may
prevent any kind of stockpiling certain combustible
materials between processing steps, thus forcing ma-
chines to hold their product until the next workstation
in the production sequence becomes available.

3) No preemption is allowed, meaning that once a product
has begun processing, it must run to completion. This
is consistent with the NIS queuing policy, as any
preempted material would have no storage and would
have to be discarded.

C. Simplifying Assumptions

In addition to operational constraints that narrow the scope
of the manufacturing systems we consider, we also impose
some simplifying assumptions that facilitate our analysis
and make exposition more clear. Unlike the operational
constraints, however, these assumptions are not essential to
problem definition nor or they critical to our results. In
particular, our assumptions are:

1) All recipes end their production sequence at the same
workstation. This assumption is made without a loss
of generality since we can always augment any recipe
to include a "final” workstation, such as storage of the
final product.

2) All machines in the same workstation are identical.
This assumption simplifies notation and the data struc-
tures used to store recipe information, but it is not
essential. Note in particular that some machines in the
workstation may process one product while the others
work on an entirely different product.

3) The only schedules considered are permutation sched-
ules. Thus, once a decision has been made to manu-
facture a sequence of products, resources are assigned
to the processing of those products in the same order
as they were scheduled. Note that this assumption
is, in many cases, restrictive since parallel machines
at workstations could allow one product to be held
dormant while another “passes” it in the production
sequence. Nevertheless, we impose this assumption in
this work and leave its relaxation for future research.

4) The factory works as designed. That is to say, ma-
chines are reliable and do not break down, nor does
their performance in processing products deteriorate
over time. The recipes, then, will produce exactly the
desired products, and no quality control is needed to
tune recipes or adapt to machine failure, etc. Clearly
our results can be extended to consider stochastic
models of failure rates or time variation of production
processes, but this is left for future work.

From these assumptions, we can then develop some spe-
cialized definitions that are meaningful for discussing this
particular class of production environments. In particular,
given no intermediate queues and our restriction to per-
mutation schedules, a decision to process product ¢ begins
with loading relevant materials into the machines at the first
workstation of product ¢’s recipe. From there, these materials
will pass from workstation to workstation as defined by the
recipe until product ¢ is processed on the final workstation.
Nevertheless, since each workstation operates on a possibly
different batch size of materials, and since the workstations
operate only when full, it may be the case that many batches
of product ¢ must be processed in tandem before some

539

machine in the production sequence is filled and can begin
processing. Thus, the concept of a load for each product
becomes meaningful. A load of a product is the minimum
amount of material required to complete processing of that
product in the factory. A load will always be an integer
multiple of the largest batch size of any machine used in
the production sequence. Note that the permutation schedule
assumption and the no-preemption constraint imply that
loads can not be interrupted; all operational decisions of
the factory boil down to scheduling a sequence of loads of
various products, which we write as v = {u(0),u(1),...},
where u(k) € P = {Py, Ps,..., Py} and means that the
k" load processed by the factory will be a load of product
u(k —1).

Another useful concept is the notion of product dominance
of the factory; a product is said to be dominating the factory
while the final workstation is processing its load. A product’s
runtime at load or step k, r(k), is the amount of time that
that load dominates the factory when processed at step k.
Finally, the idle time of transition k, A(k), is the idle time
of the final workstation once the k£ — 1 load of any product
leaves the machine until the k*" load enters the machine and
begins dominating the factory.

Moreover, under the assumption that all the machines
in the same workstation are identical, we can consolidate
the recipe information for the entire production set P in
three m X 0,4, Mmatrices, where 0,,4, is the length of the
longest production sequence over all products. Note that
this assumption implies that the vector sequences B; (k) and
T;(k), where k is the processing step, can be replaced by
sequences of numbers b;(k) and 7;(k), since a distinction
between different machines at the same workstation is no
longer meaningful. We define the i*” row of the first matrix,
Oy, to be the workstation sequence S;, appended with zeros
to match the length of the longest sequence. Likewise, let the
it" row of the matrices O, and O, be the batch sequence b;
and the time sequence 7;, each appended with zeros as neces-
sary. Thus, the collection of recipes for all products supported
by the specific manufacturing system define the factory’s
admissible operations O = {O,,, Oy, O, }. Equipped with
these definitions, we can now formulate the problem and
develop its solution.

D. Problem Formulation

This general framework sets the stage for our analysis of
manufacturing systems. The focus of the analysis is on the
interaction between the factory resources (machines grouped
into workstations) and products (characterized by recipes).
In particular, we are interested in the production capacity of
the factory, and the optimal schedule realizing this maximal
throughput.

The flexibility of the manufacturing system, however, to
produce multiple products suggests that throughput alone is
not sufficient to meaningfully answer the capacity question.
Clearly throughput may change drastically depending on
which product is being produced, so the capacity question
is meaningful only with respect to a particular quota. Let

q= [Q1 Q2 Qm]T, where ¢; is an integer number
of loads of product ¢ € P be the desired quota of each of
the m products manufactured by the factory. The schedule
to maximize throughput then becomes the same schedule to
minimize the amount of time required to produce g. Note that
the total number of manufacturing loads is K = |g|;, which
also defines the total length of the scheduling sequence u(k),
0 <k<K-—1. We say u is an admissible schedule if the
total number of loads scheduled for product ¢ equals g;.

Given the constraints and assumptions imposed on the
manufacturing system, it is clear that a given finite produc-
tion sequence (k) will generate an output sequence in the
same order. What is not clear is the completion time of this
final output sequence. Let y(k) = A(k) + r(k) be the work
time of the final workstation assomated with load k. The total
completion time is then simply ZZ o Yy(k).

We observe that the factory can be thought of as a complex
dynamic system mapping u(k) to y(k). The state of the
system at stage k is a vector z € R", where z;(k) is the
amount of time from when load k enters the first worksta-
tion in its recipe until machine 7 completes all processing
associated with load k. The initial state of the factory, z(0),
thus indicates the times when factory resources (machines)
become available for processing the first load «(0). The
action of a production schedule w(k) on the factory then

becomes
z(k+1) = f(z(k),u(k))
y(k) = g(z(k),u(k))

for some complex functions f and g. We thus have the
problem: given a factory, a production set P with their
associated recipes R, and a quota ¢, find an admissible
schedule u such that

K—1
min Z
u
(

subject to

(D

2
1) = f(z(k), u(k))
y(k) = g(z(k), u(k)).

Note that the complexity of f and g make it very difficult
to determine an optimal schedule u, even when it may
not be terribly difficult to simulate (f, g) given a particular
candidate schedule. We capitalize on this fact to develop a
discrete event realization of (f,g) in the next section. This
is then followed by an approximation method that samples
the simulation to characterize certain transition costs, yield-
ing an integer program to compute a suboptimal schedule,
approximating a solution to (2).

III. SIMULATION OF THE FACTORY

In order to simulate the factory, we model it as a discrete
event system. Initially each machine can be viewed as a
finite-state automata with a set of states © containing three
states: loading (#;), running (6,-), and unloading (6,,). These
states can be defined in terms of the portion of a full batch
the machine contains, ¢ € [0, 1], and the time the machine
has been running, 7' € Z*. The current state, 6 is defined as

540

follows:

0, when (<1 T=0
0= 0, when (=1 T<r7
0, when T >rT.

Assume a factory with n machines that can manufacture
m different products. In order to model the factory as a
dynamic system, let the state of a machine be defined by
[¢ T 7 o], where ¢ and T are defined as before, 7 € N
is the current product in the machine, and o € N is the
operation step of the product in the machine. Let R(t) =
[r1(t) ... ()], r:(t) € Z* be the remaining supply, or
raw materials, for each product given in number of batches
of the first workstation for this product’s route for each
time ¢t € 0,1,2,--- ... Also, let ¥ = [¢1 ...), ¢ €
Z* be the amount of each product completed, given in
batches of the final machine in the product’s route. Allowing
for workstations requires a trivial mapping from machine
number to workstation number. The schedule, u, creates a
sequence, Ry, where K is the number of elements in the
schedule, by setting R; ., to the number of batches of the
first workstation in a load of the product at step ¢, u(i) and
all other values of R; set to 0. Define d € N as the index
into R, where d(0) = 1.

We will first handle the update rules of general machines,
we will handle special cases next. The amount possibly
loaded into a machine that is not in the first workstation
of the current product’s route is given by:

G(t+1) = 4i(t) +min{1 — £i(t) M}

’ Ob,fr,prev
The amount possibly unloaded from a machine that is not
the last machine of the current product’s route is given by:

éz_ (t + 1) = 61 (t) — min {Ez (t), (1 — énext (t))(Ob,Tr,nea:f,)} .

If the machine is in the last workstation of the current
product’s route (0; = Ofina1), it unloads all of its product.
So the load of machine ¢ changes according to:

CHt+1), 6; =06, and Oppey = 0,

fl(t—i_l)?: ’ (")7 - Oi:fOfinai
£(t) otherwise.

When machine ¢ is running, 7" is incremented at each time
step. If the machine is empty, 7T is reset to 0. The update
function for T' is given by:

T; (t) +1 0, =20,
T;(t+1)=<¢ 0 ;=0
T;i(t) otherwise.
The values for 7 and o are set when loading a product from
machine ¢ to machine j (this implies that machine j is not
in the first workstation of the current product’s route) the
update functions for 7 and o are:

mit+1) = { mi(t) 0; =0, and £; =0

7 (t) otherwise
oj(t+1) = { 0;(t) otherwise.

541

The storage, ¥ is incremented whenever a machine in the
last workstation of the current route is unloaded, so

Vit +1) ={ ¥i(t) +1,

A machine in the first workstation of a product’s route
loads from R. Say the non-zero location in R(t) (at most
there will be one) is a. Let the machine in the first worksta-
tion be 4, then machine ¢ is updated as follows:

1 0; =0,

Lit+1)=1< £ (t+1), 0, =0, and Opeye = 0
0(), otherwise

_ a, 91 = 6[
mit+1) = { pii(t), otherwise
0]' (t +].) =].
R is updated as follows:

Ud+1,i; R(t) =0

Ti(t-i-l): T’i(t)—l, Gj =0, d(t):d-i-l.
r; (1), otherwise.

Using this simulation we can then calculate each transi-
tion’s idle time, A(k). A(k) is the idle time of the final
workstation once the entire load of the product scheduled at
step k — 1, u(k — 1), has left the machine until the product
scheduled at step k, u(k), begins using the machine, or dom-
inates the factory. Note that although the final workstation
may be idle at various times during the production of a given
load for a specified product, this idle time does not contribute
to A(k), which really captures the inefficiency related to load
transitions. r(k) follows simply as the total amount of time
that the product scheduled at step k, u(k), dominates the
factory.

Finally, an important issue for such general manufacturing
systems is deadlock. Deadlock is discussed in [10] and [4].
Four conditions for deadlock are given in [2] and heuristic
methods for avoiding and preventing deadlock are given in
[11]. We implemented a method of deadlock prevention by
preventing one of the conditions necessary for deadlock. To
do this, we define a linear ordering of the workstations.
We then only allow products to occupy workstations in
an increasing order. If the recipe dictates that a product
use a machine in a decreasing order, we require that all
workstations of lower order be reserved, meaning that there
must always be one free machine in that workstation, until
the product has completed processing of the earlier stages.
Although this is a conservative policy, it will prevent dead-
lock from occurring.

IV. METHOD OF SOLUTION

In order to determine a schedule we reduce the factory
to a model of a single-machine manufacturing system with
sequence dependent setup times. We define a transition cost
to be the one-step approximation of the idle time of the
transition plus the run time of product transitioned to. That is,
to calculate the transition cost from product ¢ to product j, we
construct the schedule v = (¢,5) and compute A(1) + r(1)
for this schedule, this is the transition cost.

The single-machine problem with sequence dependent
setup times is known to be a combinatorial problem solved
as the TSP as discussed in [6]. The formulation we derive is
based on the IP formulation of the TSP given in [12]. We will
view scheduling as traversing a graph. If a load of product &
is followed by a load of product j, it will be represented by
an arc from node ¢ to node j. The cost of transitioning from
node 7 to node j will be given by the transition cost from
product ¢ to product j. We wish to minimize total transition
cost while still producing a set amount of loads of each
product. The derivation of the IP formulation is given.

Let the matrix C' be the cost matrix for a directed graph
representing the transition costs of every product that we
desire to make where c;; is the transition cost from product
1 to product j. If a non-cyclical schedule is desired, this graph
must contain a dummy node (0) which represents the empty
factory. Because there is no product to transition to when
emptying the factory, we define the transition cost from any
product to the empty factory to be 0. In the case of a non-
cyclical schedule, C is a [m+1 x m+ 1] matrix. The matrix
X specifies which arcs to traverse to reach quota and is the
same size as C. If we let x;; represent the number of times
the arc from node ¢ to node j is traversed and c;; the cost
of that traversal, the objective function for the IP problem is
thus:

m m
min Ciiii.
X E E ijLig
7=0 =0

Because we want a tour, each node must have the same
number of incoming arcs as outgoing arcs. This adds the
constraint:

m m
inj—zmﬂ =0; j=0,1,...,m.
i=0 1=0

Let g be the quota vector. We will set the quota of node 0
to be 1. The following constraint is added:

m
Z(Eij = 4y, ij,l,...,m.
i=0
The values of X are limited to be integer values because

they are the number of times each arc is to be traversed. The
full IP problem is:

m m
j=0i=0
m m
subject to Zazij — Z:rjl = 0;
i=0 1=0
i=0,1,...,m 3)
m
Z%‘j = 4j;
i=0
j=0,1,....m

Tij € {0,1,...}.

However, this formulation allows for disjoint sets. Let ¢ be
the smallest subtour or disjoint set, ¢ is a set containing each
arc in the subtour. Since we want to find a single tour, this

o Initialize 1 := 10, j:=1
e For every arc in X do:
— while x”' =0
* Add(Sj, i) and decrement x;;
— if X contains no more outgoing arcs from i
* 1= Pop(Q)
* increment j
— else if X contains more than one outgoing arc from %
* Push(Q, 7)
- Add(Sj, 7)
— Arbitrarily traverse an available arc and remove that arc from
the graph
e Forall Si, ke {2,...
— if length(S;)! =1
* find S such that front(S;) € S;
* replace occurrence of front(S;) in S; with S;
— delete S;

+4} do:

TABLE 1
ALGORITHM FOR DETERMINING A SCHEDULE BASED ON X.

problem may be iteratively solved adding a constraint each
iteration to break the smallest subtour, ¢, of length ey gen:

Z Lij < Slength (4)

i,j€s

Once there is a single tour, the matrix X will represent
a directed graph and will specify the number of times each
arc is to be traversed. An algorithm to determine a schedule
based on X is given in Table I.

V. EXAMPLE

Let a factory with 11 different workstations and nine
products be defined as follows (all times are in minutes):

F:(2 2 2 2 6 35 2 11 1)

1 0083 2 1 138 5 0.2
1 00833 2 138 5 0.2 0.0909
1 00833 2 630 0.2 0.1 1
1 0.0833 2 120 5 0.2 0.1
1 0083 2 1 120 5 0.2
1 0083 2 1 16 20 0.05
1 0083 2 1 7 5 0.2
1 0083 2 1 7 5 0.2
Or - 1 00833 2 120 0.1 20 0.05
b 0.1 75 0.0133 0 0
1 20 005 0 0
20 0.05 0 0 0
1 20 005 0 0
0.0909 55 0.02 20 0.05
0 0 0 0 0
10 0.0133 0 0 0
10 0.0133 0 0 0
0 0 0 0 0

542

123456 7 9 1011 0 0
123567 8 9 1011 0 0
123678 9 1011 0 0 0
123567 8 9 1011 0 0
O:| 123456 7 8 6 9 1011
123471011 0 0 0 0 0
123456 7 10110 0 0
123456 7 1011 0 0 0
123591011 0 0 0 0 0
40 3 6 4 7080 11520 1560
40 3 13 2160 8640 480 15
50 3 13 2880 1920 60 60
45 3 13 2640 17280 360 60
45 3 11 20 2640 8640 420
45 3 11 20 2880 786 20
30 3 12 18 1620 1440 240
30 3 12 5 2160 5280 540
O.. \40 3 13 7200 60 78 20
T 60 78 20 0 0
60 78 20 0 0
786 20 0 0 0
60 78 20 0 0
60 2880 60 786 20
0o 0 0 0 0
78 20 0 0 0
78 20 0 0 0
o 0 0 0 0
Q:(1 32 2 2 2 11 3 2)

The transition cost matrix, C, for these products was
calculated to be:

42499
25795
25795
30318
25795
25795
38321
36621
31983
33422

38350
35221
36210
36210
36210
35221
36396
35871
35871
35221

21754
11725
11725
11725
11725
11862
17540
17387
13314
12643

12905
2654
2654
2654
2654
2654
8765
7125
2654
3857

36791
13779
14639
24658
11725
20107
32610
30879
26278
27649

15425
2987
2987
3673
2987
2987

11276
9625
4938
7691

35453
13196
16066
23750
16066
12725
31306
29689
25012
26391

10899
2355
2345
2345
2345
2358
6747
5137
2347
2349

0 43687
21107
21598
31646
16107
26199
39523
37903
33169
35287

OO OCOC OO

The IP was able to find two optimal tours, or schedules
(u1,u2) which respectively are:

6,9,3,8,9,3,2,1,4,1,4,1,5,5,2,8,8,7
6,9,3,8,9,3,2,2,1,4,1,4,1,5,5,8,8,7

Four more schedules were created for testing purposes: a
block schedule based on the solution to the associated TSP
0,6,9,3,2,4,1,5,8,7), uz; a random block schedule, uy;
a completely random schedule, us; and the worst schedule

Schedule IP Cost Simulation Time
u2 250386 243747
us3 254050 248674
U1 250386 249308
Ug 306925 294243
us 308813 295860
ug 368080 309906
TABLE 11

COMPARISON OF TOTAL PRODUCTION TIMES BETWEEN THE
SIMULATION AND ITS IP APPROXIMATION OVER VARIOUS SCHEDULES.

found by the IP (by maximizing over X rather than mini-
mizing), ug. These strategies are:

us :6,9,9,3,3,2,2,4,4,1,1,1,5,5,8,8,8,7
ug 8,8,8,2,2,7,4,4,3,3,6,9,9,5,5,1,1, 1
us :8,6,8,3,9,9,7,3,5,1,1,2,1,8,5,4,2,4
ug :2,3,5,3,5,9,8,4,8,4,8,2,6,1,7,1,9, 1

The results of running each of these strategies are found in
Table II. Note that the production times are similar for a wide
variety of schedules, and that good schedules can lead to 15-
20% improvement over poor ones, which can be a significant
savings to the enterprise. Using the approximation technique
and solving the IP can find such good schedules, while
computing them from the simulation would be intractable.

VI. CONCLUSION

This paper presents a technique to approximate the com-
plex dynamics of certain manufacturing processes. This
approximation can be used to compute scheduling policies
that appear to be close to optimal, even when the original
system would make computing such decisions intractable.

REFERENCES

[1] F. Blomer and H. Giinther. Scheduling of a mutli-product batch process
in the chemical industry. Computers in Industry, 36:245-259, 1998.

[2] E. G. Coffman, Jr., M. J. Elphick, and A. Shoshani. System deadlocks.
Computing Surveys, 3(2):67-78, June 1971.

[3] S. French. Sequencing and Scheduling: An Introduction to the
Mathematics of the Job-Shop. Mathematics and its Applications. Ellis
Horwood Limited, 1982.

[4] A. Giirel, S. Bogdan, and F. L. Lewis. Matrix approach to deadlock-
free dispatching in multi-class finite buffer flowlines. IEEE Transac-
tions on Automatic Control, 45(11):2086-2090, November 2000.

[5] E.Kondili, C. C. Pantelides, and R. W. H. Sargent. A general algorithm
for short-term scheduling of batch operations - I. MILP formulation.
Computers and Chemical Engineering, 17(2):211-227, 1993.

[6] R. G. Parker. Deterministic Scheduling Theory. Chapman and Hall,

1995.
[7] M. L. Pinedo. Planning and Scheduling in Manufacturing and
Services. Springer Series in Operations Research. Springer Sci-

ence+Business Media, Inc., 2005.

[8] S. H. Rich and G. J. Prokopakis. Scheduling and sequencing of batch
operations in a multipurpose plant. Ind. Eng. Chem. Process Des.
Dev., 25:979-988, 1986.

[9] E. Sanmarti, L. Puigjaner, T. Holczinger, and F. Friedler. Combinato-
rial framework for effective scheduling of multipurpose batch plants.
AIChE Journal, 48(11):2557-2570, Nov 2002.

[10] T. I. Seidman. ‘First come, first served’ can be unstable! [EEE
Transactions on Automatic Control, 39(10):2166-2171, October 1994.

[11] W. Stallings. Operating Systems. Prentice Hall, 4™ edition, 2001.

[12] R. J. Vanderbei. Linear Programming: Foundations and Extensions.
Kluwer Academic Publishers, 2™ edition, 2001.

543

