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ABSTRACT

MARKOV APPROXIMATIONS: THE CHARACTERIZATION OF

UNDERMODELING ERRORS

Lei Lei

Department of Computer Science

Master of Science

This thesis is concerned with characterizing the quality of Hidden Markov mod-

eling when learning from limited data. It introduces a new perspective on different

sources of errors to describe the impact of undermodeling. Our view is that modeling

errors can be decomposed into two primary sources of errors: the approximation error

and the estimation error. This thesis takes a first step towards exploring the approx-

imation error of low order HMMs that best approximate the true system of a HMM.

We introduce the notion minimality and show that best approximations of the true

system with complexity greater or equal to the order of a minimal system are actually

equivalent realizations. Understanding this further allows us to explore integer lump-

ing and to present a new way named weighted lumping to find realizations. We also

show that best approximations of order strictly less than that of a minimal realization

are truly approximations; they are incapable of mimicking the true system exactly.



Our work then proves that the resulting approximation error is non-decreasing as the

model order decreases, verifying the intuitive idea that increasingly simplified models

are less and less descriptive of the true system.
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Chapter 1

Overview

When learning from limited data, we generally would like to characterize the

quality of our efforts. Learning algorithms use a finite data record to select a mathe-

matical description, or model, of the ”true system” generating the data from a class

of candidate models. Typically the resulting model is only an approximation of the

true system, and it is often essential to understand the nature of errors in this model

before using it as the basis for future decisions, or as the basis of understanding of

the underlying phenomenon.

Characterizing modeling errors in general is quite difficult. This is because the

impact of different sources of errors are not well understood. This work introduces a

perspective on the topic that exposes it to a rigorous investigation. Our view is that

modeling errors can be decomposed into two primary sources of errors: the approxi-

mation error and the estimation error. First, an approximation error is a measure of

the distance between the true system and the set of simplified candidate models. It is

often unavoidable because the class of candidate models that our learning algorithms

explore are simple compared to the true system, which is assumed to be complex. It

is also noted that this error is independent of the learning algorithm or the amount

of data available. Second, an estimation error is a measure of the distance between

1



the estimated model and the set of candidate models. It is also often unavoidable

since the learning algorithm only has access to a finite data record, assumed to be

insufficient compared to the complexity of the underlying phenomenon. Unlike the

approximation error, this error not only depends strongly on the learning algorithm

and the amount of data available, but may depend on the class of candidate models

i.e. on the approximation error as well. In this sense the notion of approximation error

is fundamental to understanding the estimation error and, ultimately, the complete

modeling errors for any process claiming to learn from limited data.

This thesis takes a first step towards understanding these ideas by characterizing

the nature of approximation error for hidden Markov models. A hidden Markov model

(HMM) is a discrete-time finite-state Markov chain observed through a discrete-time

memoryless channel. The channel can be thought of as a (possibly probabilistic)

mapping of the state into the output; the resulting output stochastic process dose not

need to be Markovian. Such processes are extremely general and have been used in a

variety of applications including automatic speech recognition [1], language modeling

[2], communications and information theory [3], econometrics [4] and biological signal

processing [5]. Our interest in limiting the scope of our study to such processes is

that these processes have a clear notion of complexity, namely the model order, or

number of hidden states in the HMM state vector.

With this clear definition of model complexity, we can then rigorously investigate

the nature of approximation error in this context. Given a high-order HMM, i.e. the

”true system”, we are interested in characterizing the approximation error of low-

order HMMs that best approximate this true system (see Figure 1.1). This clearly

demands a notion of comparison between models of different orders. We introduce

such a notion of comparison and then use this notion to define the concept of a minimal

realization of a given HMM, that is, the simplest HMM that is equivalent to the true

system (i.e. zero error as measured by our notion of comparison between systems).

2
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Figure 1.1: Relationship between modeling errors of different systems

We show that best approximations of the true system with complexity greater or

equal to the order of a minimal realization are actually not approximations at all,

but equivalent realizations. Understanding this fact allows us to interpret certain

clustering results on lumpable Markov processes found in the literature and to develop

new equivalence results for such systems as alternate realizations of the same process.

On the other hand, we find that best approximations of order strictly less than that

of a minimal realization are truly approximations; they are incapable of mimicking

the true system exactly. Our work then proves that the resulting approximation

error is non-decreasing as the model order decreases, verifying the intuitive idea that

increasingly simplified models are less and less descriptive of the true system.

The thesis is organized as follows. The remainder of this chapter provides back-

ground information about Markov models and HMMs, realization theory including

positive linear systems and lumping theory as well as current work on approximations.
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Chapter 2 explains the relationship between high-order realizations of non-minimal

systems. To find out the realizations of non-minimal systems, we first explain in

details the lumping theory from previous work and then develop our own method

named weighted lumping to extend the applicability of lumping theory. Chapter 3

demonstrates the relationship between low-order approximations of minimal systems

and provides one of our critical proofs that the distance of low-order HMMs to a min-

imal HMM system is monotonically nondecreasing as the order decreases. Chapters

4 gives our conclusions and future work.

1.1 Background

Markov processes and hidden Markov models (HMMs) are widely used in numer-

ous domains, including bioinformatics [5], web traffic control [6], speech recognition

[7] and ecological species population prediction [8]. A Markov process is a random

process in which the current state in the process only depends on the previous state

[9]. In the case where the process can assume only a finite or countable set of sets,

it is a Markov chain [10]. Although there are various types of Markov models, this

thesis will primarily focus on discrete-time finite state space Markov models.

Denote path Q = q(1), q(2), ... as a discrete-time sequence of random variables and

q(k) as the kth state in the path with a value in a finite state space Sq = {1, 2, . . . , n}.

Definition 1 A sequence q(1), q(2), ...on Sq is a Markov chain if it preserves the

Markovian property, that is, if for all t > 0, i, j ∈ Sq,

Pr(q(k) = j|q(k−1) = ik−1, q(k−2) = ik−2, . . . , q(1) = i1) = Pr(q(k) = j|q(k−1) = ik−1)

A Markov chain is homogeneous if the one step transition probability Pr(q(k) =

j|q(k−1) = i) is independent of time k. Denote the transition probability from j

to i by aij , Pr(q(k) = i|q(k−1) = j). The matrix A , {aij, i, j = 1, 2, . . . , n} is called

transition matrix [11].

4



A transition matrix A will always be a stochastic matrix, meaning that either

every column of it sums to one (i.e. it is column stochastic), or every row of it sums

to one (i.e. it is row stochastic), and each of its entries are between zero and one.

Column stochastic and row stochastic matrices are equivalent in representing the

Markovian property and can be changed to the other through linear transformations.

Although some work in the literature uses row stochastic matrices to represent the

dynamics of a Markov chain, this thesis represents Markov models using the column

stochastic convention.

The Hidden Markov Model (HMM) is a generalization of Markov chains that cap-

tures the dynamics of observational sequences and ”hidden” sequences. The hidden

sequence is a Markov chain while the observational sequence itself is not necessarily

Markovian . HMMs were introduced in 1966 by Baum and Petrie [12] who stud-

ied statistical properties of stationary ergodic finite-state finite-alphabet HMMs and

proved consistency and asymptotic convergence of Maximum Likelihood estimation

[9]. Petrie also provided sufficient conditions for identifiability of a HMM in [13].

In a HMM, there are two fundamental parameter spaces: a group of hidden states

and a collection of output symbols. Each state generates a symbol from a specified

distribution over all possible symbols. Describe the observational sequence O over a

finite alphabet So = {0, 1, 2, . . . , m} as O = o(1), . . . , o(T ) where o(1), . . . , o(T ) ∈ So and

T is the sequence length.

To distinguish symbols from states, emission probability cij is introduced and

defined as the probability that a symbol i ∈ So is observed when in state j:

cij = Pr(o(k) = i|q(k) = j) (1.1)

The matrix C , {cij, j = 1, 2, . . . , n; i = 1, 2, . . . , m} is called emission matrix [14],

where the jth column, cj, is the output emission probability mass function over So

given the state current q = j.

5



The hidden sequence Q is a Markov chain; however, it is well known that the

stochastic observational sequence O may not be a Markov process [15], but simply a

function of the hidden states.

Definition 2 A path Q and an observational sequence O will form a hidden Markov

model if they satisfy the following relations:

Pr(q(k)|q(1), . . . , q(k−1), o(1), . . . , o(k−1)) = Pr(q(k)|q(k−1))

Pr(o(k)|q(1), . . . , q(k−1), q(k), q(k+1), . . . , q(T ), o(1), . . . , o(k−1), o(k+1), . . . , o(T )) = Pr(o(k)|q(k))

The process of generating a sequence from a HMM is as follows: Given an initial

state q(0), a state q(1) is then selected with the probabilities a10. In that state, an

observation is emitted according to the distribution cq(1)
. Then a new state, q(2), is

chosen according to the transition probabilities in A and a new observation is emitted

according to Cq(2)
, and so on [16]. In this way, a random sequence of observations is

produced.

A HMM can also be regarded as an automaton (See Figure 1.2). The states

in the state vector can be regarded as nodes in the automaton. Each node can

have incoming and outing arrows. A number aij on an outgoing arrow represents a

transition probability from node j to i. If aij = 0, it means that there is no transition

from j to i. In this situation, we do not put aij on this outgoing arrow. At each node,

an observation will be emitted according to a distribution associated with that node.

This represents the emission transition probability.

Although a HMM defines the behavior of two stochastic process, Q and O, it

is convenient to analyze the dynamics of these processes in forms of the evolving

probabilities, not in forms of the actual random variables q and o. Denote the set

R+ = [0, +∞) as the positive real numbers, Rn×m as the set of matrices of size n-by-

m, and Rn as the set of vectors of size n-by-1. We then define the probability mass

function from which the state q(k) is sampled as x(k) ∈ R. That is, xi(k) represents

6
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Figure 1.2: A HMM can be regarded as an automaton

the probability that q(k) = i, {i = 1, . . . , n}. The state transition matrix A then

completely characterizes the dynamics of x(k) as

x(k + 1) = Ax(k) x(0) = xo

where x(0) or xo is the initial state distribution. Likewise, at time k, let y(k) ∈ Rm

be the distribution from which o(k) is sampled. Then we have

y(k) = Cx(k)

where C is the emission matrix. The dynamics of a HMM are thus completely char-

acterized by a positive linear dynamic system

x(k + 1) = Ax(k) x(0) = xo

y(k) = Cx(k)

in which A ∈ Rn×n
+ , C ∈ Rr×n

+ , x(k) = Rn
+ and y(k) = Rr

+.

Note that this is a discrete-time noise free zero-input HMM. A comprehensive

study on the dynamic system setup of HMMs is also provided by Elliott in [17].
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The number of states in x(k) of an HMM is called the order. Denote 1 as the

vector [1 1 . . . 1]T with corresponding dimensions, we have

x(k)T1 = 1 y(k)T1 = 1

AT1 = 1 CT1 = 1

If the initial condition x(0) and transition and emission matrices A and C are

known, x(k) and y(k) at time step k can be calculated as:

x(k) = Ax(k − 1) = A · Ax(k − 2) = . . . = Akx(0)

y(k) = Cx(k) = CAkx(0)

Since a pair of transition and emission matrices describe all the dynamics of a

system, we use (A,C) to represent a HMM in the thesis. If a specific path and an

observational sequence are noted, then the corresponding initial condition x(0) would

also be relevant.

Note, in the community of difference equations, the ”order” of a difference equation

could also refer to the difference between the highest and lowest indices in the equation

[18]. For example, x(k + 3) = Ax(k) is a third-order system. However, one nth

order difference equation can always be turned into n first-order difference equations

[19] (see proof in the Appendix 5.1). Thus, they are equivalent. Without loss of

generality, we confine our attention to the first-order difference equations and use the

word ”order” in this thesis to mean the number of states in the hidden state vector

of a first-order state difference equation. For systems of different orders, we use true

system to refer to the nth order HMM that generates data, and reduced or low-order

system to refer to mth order HMMs, where m < n. With the clarification, we can

now use ”order” to examine the complexity of an HMM.

Order is a good measure of complexity for HMMs because it governs how many

parameters are needed to completely characterize the dynamics of a HMM. The num-

ber of parameters in a nth order HMM is defined as the total number of parameters

in the transition and emission matrices. We do not include the initial condition of the

8



hidden state vector in our parameters unless a specific path or sequence is necessary.

In the thesis, the observation space is chosen to be binary, i.e So = {0, 1}, although all

the results generalize. With the binary observation space, the number of parameters

that needs to be estimated in a nth order HMM is n × n + 2 × n = n2 + 2n. It is a

function of the order and indicates that the order of a system restricts the number

of parameters that can be estimated. This restriction causes a problem in practice

when people want to use a learning algorithm to estimate the parameters but have

no information on the order of the true system. Even with a well-performing learning

algorithm, it is still very likely that people underestimate the true system because

they select an order less than that of the true system to build their model.

A practical example of this problem can be found from applications of Markov

processes in forestry management for landscape diversity under uncertainty. An ap-

propriate forestry management plan has to consider both ecological concerns and

economic expectations. Modeling the ecological effects of a management strategy on

the landscape is primarily restricted by the need to keep the number of system states

such as species composition and possible catastrophic disturbances small enough for

numerical solutions. This may result in an oversimplification of the biological system

[20]. However, it is necessary to simplify the definitions of states in order to carry

out a practical silvicultural prescription. Thus, a choice of an appropriate number

of states or the order of the system becomes vital before we can focus on details of

other parameters in the model. It is also important to evaluate how well simplified

models can perform compared to the true model in predicting different silvicultural

pathways and consequences of various treatments. It is desired that a low-order less

computational intensive model be built to approximate the true model as close as

possible.

9



1.2 Previous Work

A review of order estimation approaches can be found in [9]. Finesso developed

an information-theoretic approach to estimate the order of a finite-alphabet HMM in

[21]. Kieffer proposed a code-based approach to estimate the order of time invariant

ergodic finite-state HMMs and proved strong consistency of the algorithm [22]. Ziv

and Merhav used a Neyman-Pearson type criterion to minimize the probability when

the estimated order is less than the true order in [23]. However, they all estimated the

order simply based on their learning algorithms especially on the Maximum Likeli-

hood algorithm. This is different from our work. We not only examine the connection

between true system and estimations, but also the relationship between approxima-

tions and estimations that does not depend on the learning algorithm. In addition, we

attempt to disclose the uniqueness of an approximate order by considering the trade-

off between uncertainty and complexity, which is explained by two different modeling

errors.

Besides exploring the tradeoff, we study the characteristics of different true sys-

tems and identify their possible bounds. This is a minimality problem. Since equiv-

alent representations, i.e. systems of order equal or higher than a minimal system

always exist (we will explain this more in the later chapters), the first step towards

solving a minimality problem is to characterize the minimal order of one system whose

behavior is consistent with the observational information. It is within the scope of

realization theory.

The realization problem for HMMs is: under what circumstances two finite-state

HMMs can generate the same output distribution? In other words, given a HMM and

its initial condition, find a way to construct another HMM (the transition, emission

matrices and possibly the initial condition if required) such that this constructed

HMM will be able to produce an identical observational distribution sequence as the

true system. Particularly, it is interesting to characterize the minimal requirement for

10



two systems to be eligible for equivalence, the notion of which we will explain later.

In 1957, Blackwell and Koopmans first discussed the realization problem in [24].

Picci studied the stochastic realization problem of finite-valued processes in [25]. Hof

and Schuppen provided sufficient conditions for the existence of a positive realization

by means of polyhedral cones [26]. They considered non-zero input dynamic systems

and their sufficient condition is stronger than the reachability/observability condition.

However, the Hankel matrix in their sufficient condition becomes a zero matrix when

the input is zero and thus does not apply to the HMMs we discuss in this thesis.

They also mentioned that classification of all minimal positive realizations as well as

factorization of positive matrices remained as the two unsolved issues in characterizing

the minimality of systems [26]. A complete solution to the realization problem has

not been found. Blackwell and Koopmans provided a solution to the realization

problem under special conditions [24]. Gilbert introduced LDP (Linearly Dependent

Processes) to extend the generality of the solution, but it is still a partial solution

[27]. Ito, Amari and Kobayashi used algebraic systems, equivalent relations and

quotient algebraic systems established by Kalman, Falb and Arbib [28] to solve the

minimality problem in [15]. They gave a necessary and sufficient condition to identify

the equivalence of two HMMs, but their approach merely worked with one single fixed

initial condition and could not be generalized to various initial conditions. Partial

solutions can also be found in [29] and [30]. It is the nonlinearity caused by the

positivity constraint of probability and the non-observability of states that make the

realization problem demanding to solve [15].

To consider a minimality problem, research usually starts with realizations of non-

minimal systems. Lumping is an approach to obtain a realization of a non-minimal

system. It uses either an integer or real aggregation operator to map the true system

to the low-order system. Actually lumping is a special kind of aggregation in terms of

preserving the Markovian property in the low-order systems. The Simon-Ando theory

11



in [31] first discussed the aggregation of variables in the nearly decomposable dynamic

systems and provided an approach to represent a system as a superposition that sep-

arated the short-run and long-run dynamics. This laid the theoretical foundation for

most aggregation techniques [32]. The approach developed in [33] simplified a Markov

chain by removing irrelevant states calculated through a reward function [34] when

the function scores were below the predefined threshold. The concept of lumpability

has been addressed in [35] to discuss finite Markov chains. Model reduction with

irreducible Markov chains can also be found in [36]. Only recently has lumping been

applied to the area of HMMs [37]. Concepts of lumpability of HMMs were general-

ized in [37] and necessary and sufficient conditions were suggested for HMMs to be

lumpable. Three fundamental lumping algorithms were presented in [38] for discrete

Markov chains based on their time variance property and the direction of transitions.

Ito et al. provided sufficient and necessary conditions for the identifiability problem

of Markov chains though they did not explicitly use the notion of lumping [15]. We

show in the next chapter that all types of lumpings are simply methods to generate

equivalent realizations of non-minimal systems.

While the realization problem examines the situations when two HMMs can gen-

erate identical output distributions, an approximation problem aims at characterizing

a minimal difference between the output distributions of two HMMs of different or-

ders. It is similar to the notation of a realization problem except for that it does not

guarantee a zero difference between the true system and the approximated system.

Until now not much has been done in finding a low-order system which miniminzes

modeling errors to the true system. Kotsalis and Dahleh discussed the approxi-

mation problem between a reduced system and the original system and provided a

metric to measure the asymptotic distance of two irreducible Markov chains [36].

Beheshti also presented Minimum Description Complexity (MDC) as a new order

estimation method to identify a best representative model of the true LTI (Linear

12



Time-Invariant) system among a set of candidate models [39]. She examined the role

of undermodeling no matter the true system is included in the competing model sets

or not. This is similar to what we consider in this thesis where we mostly investigate

the situation when the order of a candidate model is less than the true system.

1.3 Thesis Statement

In this thesis, we propose a decomposition of Hidden Markov modeling errors into

two pieces: approximation errors which are independent of data and describe the

difference between a true system and a system of order less than the true system;

and estimation errors which are caused by learning algorithms given limited data.

We further decompose the approximation errors into realizations and best approx-

imations, which characterize the situations of zero and non-zero distances between

systems respectively. We seek to characterize minimality and use lumping theory

to find realizations of non-minimal low order systems. We also seek to characterize

the relationship between best approximations and the true system as the order of

simplified systems decreases.

1.4 Contribution

In this thesis, we introduce decomposition of modeling error in two pieces: approx-

imation errors and estimation errors. We first define what we mean by of distance,

dynamic consistency, realization and best approximation. We then characterize min-

imality and show the proof of a known result that a system is minimal if it is observ-

able. We show that best approximations of a true system with complexity greater

or equal to the order of a minimal realization are actually equivalent realizations of

the true system. We prove this by embedding a true system into high-order equiva-

lent systems to construct realizations. To find low-order realizations of non-minimal

HMMs, we present three types of integer lumping from previous work and discuss

their weaknesses. We further develop an approach named weighted lumping or real

number lumping to extend the applicability of lumping to a more general class. We
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demonstrate sufficient conditions derived by integer lumping or weighted lumping in

answer to three questions: 1. Given two HMMs of different orders, what are the

criteria to determine their equivalence? 2. Given one HMM, how do we decide if

there is a low-order realization and how do we construct a system of low-order that

is dynamically consistent with the true system? 3. What is the uniqueness of re-

alizations? We show that all types of lumpings are simply low-order realizations of

non-minimal systems. Finally, we prove monotonicity of the approximation errors.
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Chapter 2

Realizations of Non-minimal

Systems

Given a true system, we are interested in characterizing the approximation error

of HMMs that approximate the true system to a greatest extent. The first step to

explore a best approximation is to examine the situation when the approximation

error is zero, i.e. when one system is equivalent to the other. This belongs to the

scope of realization theory, which is a special case of approximations. The general

purpose of realization theory is to find a linear system with nonnegative entries in

both its transition and emission matrices (called a positive linear system) to realize

a given transfer function. HMMs are one special type of positive linear systems. In

realization theory, the order of two HMMs could be the same or different. Particularly,

we confine our attention to the situation when the order of a realization is less than the

true system. Among the set of low-order candidate systems, we focus on realization

questions such as: 1. Given two HMMs, how can we determine if one HMM is

equivalent to the other? 2. What is the requirement for a HMM such that its low-

order equivalent system exists? 3. If the low-order realization exists, is it unique?

4. How many low-order realizations are there for a HMM? 5. How can we construct
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low-order realizations from the true system with limited data? Note that no matter

whether the approximation error is zero or not, this error does not depend on the

learning algorithm or the amount of data available; it would simply be a measure of

the distance between the true system and the set of candidate simple models.

When investigating the realizations, it is important to distinguish the class of

systems that have low-order realizations from the rest of the candidate systems and

characterize their behaviors and speciality. This is a minimality problem. The goal

of a minimality problem is to identify the essential meaning of minimality in terms

of order. One of our purposes is to calibrate the minimal requirement for a HMM

that has a low-order equivalent realization. This is actually a difficult problem that

remains unsolved because it is hard to factorize a positive linear system and classify

all minimal realizations of positive linear systems. [26]. Understanding the notion of

minimality will help us to interpret certain aggregation results of lumpable Markov

processes found in the literature and to develop new equivalent results for such systems

as alternate realizations of the same process.

In this section, we first characterize the meaning of distance, dynamic consistency,

realization and best approximation. We then define minimality and explain its rela-

tionship with irreducibility and observability. We prove that a system is minimal if

it is observable. After characterizing minimality, we point out that it is the linearly

positiveness and stochasticity that make the realization problem difficult to solve.

In order to reveal that best approximations with order greater or equal to the order

of a minimal realization are actually realizations of the true system, we construct

realizations by embedding a true system into high-order equivalent systems. For

HMMs, we illustrate integer lumping and weighted lumping theory to find low-order

realizations of non-minimal systems. We present three types of integer lumping and

discuss their weaknesses. We further provide an approach named weighted lumping

or real number lumping to extend the applicability of lumping to a more general
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class. We demonstrate sufficient and necessary conditions derived by integer lumping

or weighted lumping in answer to three questions: 1. Given two HMMs of different

orders, what are the criteria to determine their equivalence? 2. Given one HMM,

how do we decide if there is a low-order realization and how do we construct a system

of low-order that is dynamically consistent with the true system? 3. What is the

uniqueness of realizations? Finally, we show that all types of lumpings are simply

low-order realizations of non-minimal systems.

2.1 Low-order Realizations of Non-minimal Systems

Given a true system and two HMMs, how do we decide which HMM is closer to

the true system than the other? In other words, how do we quantify the difference

between systems? In order to measure the modeling errors between systems, we first

introduce the notion of distance.

Definition 3 Given a true system (A,C) of order n,

x(k + 1) = Ax(k)

y(k) = Cx(k)

and another system (Ã, C̃) of order m < n,

x̃(k + 1) = Ãx̃(k)

ỹ(k) = C̃x̃(k),

the distance between (A,C) and (Ã, C̃) is defined as:

d((A,C), (Ã, C̃)) =‖ y(k)− ỹ(k) ‖2 (2.1)

By this definition, the distance between two HMMs is measured by the difference

between their output distributions in the form of a 2 − norm. Since it does not

matter what norm is chosen when the distance is zero for realizations (any norm on

zero still gives a result of zero), we will explain more about the norm selection in the

next chapter.
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Definition 4 Given two systems (A,C) and (Ã, C̃), (Ã, C̃) is said to be dynamically

consistent with (A,C) if d((A,C), (Ã, C̃)) = 0.

Dynamic consistency is a property that suggests the equivalency of two systems.

(Ã, C̃) is a realization of (A,C) if the distance between the two systems is zero; (Ã, C̃)

is an approximation of (A,C) if the distance is nonzero; Among all the systems that

have nonzero distance to the true system (A,C), (Ã, C̃) is a best approximation of

(A,C) if the distance from (Ã, C̃) to (A,C) is minimal, i.e.

min
(Ã,C̃)∈S

d((A,C), (Ã, C̃)) = min
(Ã,C̃)∈S

min
x̃o

max
xo

‖ y(k)− ỹ(k) ‖2 (2.2)

In this equation, max
x0

means to start with the worst case of an initial condition in the

true system to make the distance greatest; min
x̃0

means to search an initial condition

among every possible initial condition in the state space of all low-order candidate

systems to minimize the distance. Note that we confine our focus to a stochastic

framework, in which all possible initial conditions xo ∈ Rn
+ and x̃o ∈ Rn

+ must be

column stochastic.

These definitions demonstrate that, if a system of order less than the true system

can yield an output distribution that minimizes the distance to the true system with

an appropriate initial condition among all the possible initial conditions, this system

is regarded as a best approximation of the true system. In terms of HMMs, two

systems are equivalent if they have the same output. For example, if we have two

casino machines, one with only one die and the other with 100 dice, it is really

difficult for a player to realize the difference between the two machines if he observes

two identical distribution sequences of points generated by the machines at each and

every roll.

Definition 5 A system is said to be a minimal system if there is no system of low-

order that has a zero distance to this system.
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If a system is a minimal system, approximation errors will always exist between all

the low-order systems and this true system. Minimality is a property that describes

the minimal requirement of a system’s order to guarantee the existence of a low-order

realization of the true system. If a system has an equivalent system of order less than

it, this system is a non-minimal system. To characterize minimality, we introduce

the notion of reducibility and observability.

Definition 6 A matrix A ∈ Rn×n is said to be reducible if either

(a) n = 1 and A = 0; or

(b) n ≥ 2, there is a permutation matrix P ∈ Rn×n, and there is some integer r with

1 ≤ r ≤ n− 1 such that P T AP =




B C

0 D


,

where B ∈ Rr×r, D ∈ R(n−r)×(n−r), C ∈ Rr×(n−r) and 0 ∈ R(n−r)×r is a zero matrix

[18].

A matrix A ∈ Rn×n is said to be irreducible if it is not reducible [18].

Definition 7 Given a system (A,C) of order n,

x(k + 1) = Ax(k)

y(k) = Cx(k)

it is observable if the observable matrix O has full rank, where

O =

[
C CA CA2 . . . CAn−1

]T

Theorem 2.1.1 If (A,C) of order n is observable, it is a minimal system.

Proof We prove this by contradiction. Suppose (A,C) is observable, but not mini-

mal. Then for this non-minimal system (A, C), ∃(Ã, C̃) such that

d((A,C), (Ã, C̃)) = 0.

This means the output distributions should also be equal at all times, that is, ∀x(0),∀n,

∃x̃(0), such that
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


C

CA

. . .

CAN




x(0) =




C̃

C̃Ã

. . .

C̃ÃN




x̃(0)

However ∀N > n, since (A,C) is observable,

for the left hand side, dim(span

[
C CA CA2 . . . CAN

]T

) = n;

for the right hand side, dim(span

[
C̃ C̃Ã C̃Ã2 . . . C̃ÃN

]T

) = m < n

This results in a conflict between the dimension of the matrices on the left and

right hand side. Therefore, (A,C) has to be minimal if it is observable.

2

This theorem indicates that observability is an important property to characterize

minimality. If a system is non-minimal, it must be unobservable.

Hof also mentioned in [40] that if a positive linear system is observable and reach-

able, then the system is a minimal positive realization of it impulse response. Since

we focus on autonomous systems with zero input, we do not need to deal with reach-

ability. Topics related to observability can also be found in [41].

It is recognized that the realization problem, especially the problem of character-

izing minimality of the state space for HMMs, is difficult due to the fact that they

are positive stochastic processes. Partial solutions to the minimality problem were

provided: [42] and [43] used geometric interpretation to attempt to find a complete

solution, [25] and [44] constructed Hankel matrices to describe positive factorizabil-

ity, and [45] employed primitiveness to solve the positive realization problem. Linear

algebra can provide a realization to the true system easily by change of basis [46],

but after linear transformation it is not easy to maintain the entries of probability

in a range of [0, 1] and to keep values in each column sum to one; not to mention to
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preserve the Markovian property if we want to construct an equivalent system from

the true system. In addition, research usually focuses on finding a realization of equal

or lesser order than the true system rather than a realization of higher order. We can

construct a high-order equivalent realization by expanding it as follows:

Given a true system (A,C) of order n, construct a pair (Ā, C̄) of order N > n,

where

Ā =




An×n 0n×(N−n)

0(N−n)×n IN−n


 C̄ =

[
C2×n D2×(N−n)

]
x̄(0) =




xn×1

0(N−n)×1(0)




and D2×(N−n) is an arbitrary stochastic matrix.

We can verify that y(k) = ȳ(k) = CAkx(0). This shows that we can always find

a high-order realization of a true system when the order of candidate systems is

overestimated. What interests us more is to explore the realization problem within

a set of low-order systems. Though there is no complete solution to find low-order

realizations for an arbitrary positive linear system, there are methods that are able to

generate a realization if we constrain the true system within a specific set. Lumping

theory is one of them. Lumping is a special kind of aggregation in terms of preserving

the Markovian property and stochasticity in the lower system. Generally speaking,

lumpability means to partition the atomic states of a Markov chain into coarse groups

which behave in a dynamically similar manner as the original system [37]. There are

various types of lumping according to different classifications: we can classify lumping

into integer lumping, weighted lumping based on the type of partition we use. We can

classify lumping into homogeneous (stationary) lumping and inhomogeneous lumping

according to the time variance property of the transition matrix. Stationary lumping

can be further classified into subcategories according to the direction of the transition

arrows in the automata. Most of the previous works focus on integer lumping. Integer

Lumping has been exploited in various areas including speech recognition [47], system
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specification [38], and communication signal processing [48]. Kemeny addressed the

concept of weak lumpability in [35]. More recently, Ledoux discussed the impact of

various initial conditions on different forms of state aggregation in [49]. Most of the

lumpability work is concerned with Markov chains and only recently has the concept

been introduced to describe dynamics of HMMs [37]. Dogancy implicitly used integer

lumping to find approximations of HMMs in [32]. White et al. further investigated

the concept of integer lumping by separating the time scale in the Markov chain

dynamics and achieved reductions of states by eliminating the ”non-slow” states in

[37].

To explain how lumping theory can help us to find realizations, we first provide

a review on what has been done with lumping theory. The most common type of

lumping is integer lumping, which only has integer entries in the partition matrix.

Then we show the limitations of integer lumping in searching for a realization. After

that, we present our weighted lumping approach which generalizes lumping theory.

2.1.1 Integer Lumping

Let xi(k) ∈ R+ denote the ith state in the state vector x(k). Also let Sx =

{s1, . . . , sn} denote the set of nodes in the corresponding automaton where s
(k)
i rep-

resents the ith node associated with xi(k).

Definition 8 1 For an positive integer m < n, a Markov chain is said to be weakly

m-lumpable if and only if ∃ S̄x = {S̄1, S̄2, . . . , S̄m} where S̄i ⊂ Sx, i ∈ {1, . . . , m},
S̄i ∩ S̄j = ∅ if i 6= j and

m⋃
i=1

S̄i = Sx, such that ∀i = 1, . . . , m, Pr[s
(k)
r ∈ S̄i|s(k−1)

p = h]

is independent of h, ∀h ∈ S̄j, ∀j 6= i.

Weakly lumpability indicates that an aggregated transition probability from a

node sp in cluster S̄j to another node sr in cluster S̄i (i 6= j) does not depend on the

1A similar definition can be found in [36].
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previous state where it stayed. In other words, if the high order system as well as the

low order system are both Markov processes, weakly m-lumpability is preserved.

Definition 9 L ∈ Rm×n is said to be an aggregation operator if it satisfies: Rn →
Rm, lji = 1 if si ∈ S̄j and lji = 0 otherwise.

With a particular partition, each node in the automaton will be grouped into one

unique cluster. lij serves as an indicator demonstrating whether node i is grouped in

cluster S̄j or not.

Lemma 2.1.2 If L ∈ Rm×n, m < n, then rank(L) = m.

Proof With rank inequality, rank(L) ≤ m. According to the definition of aggrega-

tion operator, lij ∈ {0, 1}. Since there is no empty cluster in the aggregation, each

row must have at least one 1, and each column can only have one 1; in order to keep

stochastic property, each column can only have one 1. Therefore, there are m linear

independent row vectors in L, i.e. rank(L) = m.

2

An aggregation operator L enables us to partition the true system and group n

states into m clusters. It will relate the high and low state vectors in a coherent

steady way.

Definition 10 A low-order system is said to be state dynamically consistent with

the true system if there is an aggregation operator L such that ∀k,

x̃(k) = Lx(k) (2.3)

This property suggests that once L and initial conditions are fixed, behaviors of

the low-order state vector will be determined by the high-order state vector.

With an aggregation operator, it is possible for lumpings to generate different

low-order realizations. According to the time variance property and the direction
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of transition probabilities, there are basically three types of integer lumping for a

Markov process: general lumping, ordinary lumping and exact lumping.

Let g, o, e denote the type of integer lumping: general, ordinary and exact. In

lumped models, denote Ãm
t (k) ∈ Rm×m as an mth order transition matrix, using one

of the lumping types t = {g, o, e}. Let ãpq(k) denote an transition probability from

cluster S̄q to S̄p at time k in Ãm
t (k).

Definition 11 A lumping is said to be a general lumping if it satisfies:

(i) x̃(k) =
∑

i:si∈S̄j

x(k), i = 1, . . . , n, j = 1, . . . , m;

(ii) ãpq(k) =
∑

j:sj∈S̄q

λjq(k)
∑

i:si∈S̄p

aij, where λjq(k) = Pr[sj|sh ∈ S̄q]

General lumpability is a time variant exact reduction of the higher order model.

Condition (i) indicates that the value of a new aggregated state in a low-order model

is the sum of all the state values within that aggregated group in the original model.

Though there are other ways to aggregate the states in the vector, they do not nec-

essarily preserve stochasticity. A sum operation ensures stochasticity. Condition (ii)

calculates the transition probability matrix in the low-order model (its derivation can

be found in the Appendix 5.2).

Example 2.1 If we have a 3rd order column stochastic Markov chain:




x1(k + 1)

x2(k + 1)

x3(k + 1)




=




a11 a12 a13

a21 a22 a23

a31 a32 a33







x1(k)

x2(k)

x3(k)




We want to reduce it to a 2nd order model by aggregating the first two states

into one cluster and leave the third one as the other cluster. Compute the transition

probabilities according to condition (ii),

x̃1(k) = x1(k) + x2(k); x̃2(k) = x3(k);
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ã11(k) = x1(k)
x1(k)+x2(k)

· (a11 + a21) + x2(k)
x1(k)+x2(k)

· (a12 + a22);

ã21(k) = x1(k)
x1(k)+x2(k)

· a31 + x2(k)
x1(k)+x2(k)

· a32;

ã12(k) = a13 + a23; ã22(k) = a33.

It can be verified that

∀k,




x̃1(k + 1)

x̃2(k + 1)


 =Ã

(2)
g (k) ·




x̃1(k)

x̃2(k)




2

With a general lumping, the evolution of a reduced model is given by:

x̃(k + 1) = Ãm
g (k)x̃(k) = Ãm

g (k)Ãm
g (k − 1)x̃(k − 1) = . . . =

k∏
i=0

Ãm
g (i)x̃(0) (2.4)

The capability of general lumping to preserve dynamic consistency stems from

the fact that it turns a homogeneous system into an inhomogeneous system of small

dimension. Though the size is reduced, the transition matrix now becomes a func-

tion of time. Each entry in Ãm
g (k) is refreshed based on non-stationary conditional

probabilities calculated from pairs of starting and ending states at each round of

transition. Indeed, this approach does not save computational expenditure because

a large amount of memory is sacrificed to store updated values at each round for the

benefit of reduction.

General lumping is not desirable since it produces non-stationary systems of low-

order, but it enjoys the strength of having no requirements for the transition matrix.

The following two integer lumping approaches have the advantage of generating ho-

mogeneous systems and saving computation. However, not all Markov chains meet

the corresponding lumpable requirements.

Definition 12 A lumping is said to be an ordinary lumping if it satisfies:

25



���

���

���

���

���

���

���

���

���

���

���

���

���

���

�

�

�

�

��	
���
��
����
��	
���	
�
�
�

��	�
����
�����
���	
��	
���	
��������
�
��
���������

Figure 2.1: An automaton of the ordinary lumping example

(i) x̃(k) =
∑

i:si∈S̄j

x(k), i = 1, . . . , n, j = 1, . . . , m;

(ii) ãpq =
∑

h:sh∈S̄p

ahi, i : si ∈ S̄p.

(i) is the same as the first condition in general lumping. (ii) indicates that ordi-

nary lumping conducts aggregation by considering all the outgoing directions of the

transition probabilities. If two nodes i, j transit out to a third node h in S̄p with

the same probability p, i and j can be gathered into one cluster S̄q. The probability

from S̄q to h is thus p, i.e, if Pr[s
(k+1)
h |s(k)

i ] = Pr[s
(k+1)
h |s(k)

j ] = p, then ãpq = p. We

can also treat ordinary lumping as this: when the outgoing probabilities are equal,

the value of λjq(k) stays the same for all k due to fact that the ratio of the original

state value to the aggregated state value is fixed. In this sense, ordinary lumping is

a special case of general lumping.
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Most of the previous work on ordinary lumping used the definition to compute

the low-order transition matrix Ã. This is sometimes inconvenient. However, if we

know a matrix A is ordinary lumpable and the probabilities between the aggregated

nodes are row-wise uniformly distributed, other than using the definition, we found

an easy way to calculate Ã.

Theorem 2.1.3 If A is ordinary lumpable by aggregating states xp, xp+1, . . . , xq,

1 ≤ p < q ≤ n, denote r = q − p + 1; aip = ai(p+1) = . . . = aiq, i = {p, p + 1, . . . , q};
then ∃Ã = LAR such that ∀k, ∀x(0), x̃(k) = Lx(k) holds, where R ∈ Rn×m

+ denote

the pseudoinverse of L and LR = Im×m.

Proof Without loss of generality, we assume that we lump a nth order ordinary

lumpable model into a mth order model by aggregating states x1, x2, . . . , xr, r =

n −m + 1. Denote vi as the value of aip, i=1,. . . ,r. The transition matrix A should

look like:

A =




v1 . . . v1 a1(r+1) . . . a1n

v2 . . . v2 a2(r+1) . . . a1n

vr . . . pr ar(r+1) . . . arn

a(r+1)1 . . . . . . . . . . . . a(r+1)n

an1 . . . . . . . . . . . . ann




Then the aggregation operator L∈Rm×n
+ and its pseudoinverse R ∈ Rn×m

+ should

look like:

L =




1 . . . 1 0

0 . . . 0 I(m−1),(m−1)


 R =




1
r

0 . . . 0

. . . . . . . . .

1
r

0 . . . 0

0 I(m−1),(m−1)




In the first row of L, there are (n−m + 1) ones; the submatrix from l2(r+1) to lmn
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Figure 2.2: A matrix representation of the ordinary lumping example

is a (m − 1) × (m − 1) identity matrix. Correspondingly, in the first column of R,

there are (n−m + 1) 1
r

and the submatrix is a (m− 1)× (m− 1) identity matrix.

ARL = A




1
r

. . . 1
r

0 . . . 0

. . .
...

. . .
...

1
r

. . . 1
r

0 . . . 0

0 . . . 0 I(m−1),(m−1)




= A

Thus,∀k, x̃(k) = Lx(k) = LAkx(0) = L(ARL)kx(0) = LARLAR . . . ARLx(0)

= (LAR) . . . (LAR)x̃(0) = (LAR)kx̃(0) = Ãkx̃(0)

Therefore, instead of using the definition, we can directly construct a mth order

matrix by Ã = LAR and keep the state dynamic consistency.

Example 2.2 See Figure 2.1 and Figure 2.2. A ∈ R4×4:




x1(k + 1)

x2(k + 1)

x3(k + 1)

x4(k + 1)




=




0 1/4 1/4 1/2

0 1/2 3/8 1/8

1/2 1/8 1/4 1/8

1/2 1/8 1/8 1/4







x1(k)

x2(k)

x3(k)

x4(k)




Since a12 = a13 = 1/4, a22 + a32 = 1/2 + 1/8 = a23 + a33 = 3/8 + 1/4 and

a42 = a43 = 1/8, A is ordinary lumpable. We use ordinary lumping to aggregate state
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Figure 2.3: A matrix representation of the exact lumping example

x2(k) and x3(k) into one cluster x̃o2. The ordinary lumped model is:




x̃o1(k + 1)

x̃o2(k + 1)

x̃o3(k + 1)




=




0 1/4 1/2

1/2 5/8 1/4

1/2 1/8 1/4







x̃o1(k)

x̃o2(k)

x̃o3(k)




, where Lo =




1 0 0 0

0 1 1 0

0 0 0 1




2

Definition 13 Let r(i) denote the number of states in cluster S̄i and vi denote the

value of each state in cluster S̄i. A lumping is said to be an exact lumping if it

satisfies:

(i) x̃(k) =
∑

i:si∈S̄j

x(k) = r(i) · vi, i = 1, . . . , n, j = 1, . . . , m;

(ii) ãpq = r(S̄p)

r(S̄q)

∑

j:sj∈S̄q

aij, i : si ∈ S̄p, q = 1, . . . , m

(i) demonstrates that states within each cluster have to be uniformly distributed.

(ii) indicates that exact lumping achieves an aggregation by considering incoming

transition probabilities. If a third individual node transfers to node i and j with

equal probability and the inter-transitional probabilities between i and j are the

same, we aggregate them into one cluster.

Example 2.3 We still use the true system in Example 2.2. Since a31 = a41 = 1/2,

a32 = a42 = 1/8 and a33 + a34 = 1/4 + 1/8 = a43 + a44 = 1/8 + 1/4, A is exact
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Figure 2.4: An automaton of the exact lumping example

lumpable. By exact lumping, we aggregate state x3(k) and x4(k) as one cluster x̃e3

(see Figure 2.4 and Figure 2.3). Using Le, the exact lumped model can be represented

as:




x̃e1(k + 1)

x̃e2(k + 1)

x̃e3(k + 1)




=




0 1/4 3/8

0 1/2 1/4

1 1/4 3/8







x̃e1(k)

x̃e2(k)

x̃e3(k)




, where Le =




1 0 0 0

0 1 0 0

0 0 1 1




Note that even though the true system is the same, this lower system is different

from the one we obtained from ordinary lumping in the previous example.

2

Lemma 2.1.4 Ordinary and exact lumping are the only two ways to achieve a low-

order homogeneous system if integer lumping is employed to obtain a realization.
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Proof This can be proved by contradiction. Suppose there is a third kind of integer

lumping other than ordinary or exact lumping that can produce a low-order time

invariant system and keep state dynamic consistency. For the sake of easiness, we

show the simplest case of reducing a third-order system to a time invariant second-

order system. Given we have a random transition matrix

A =




a11 a12 a13

a21 a22 a23

a31 a32 a33




Also assume that we want to aggregate states x1(k) and x2(k). (Situations of

aggregating other states can be proved similarly). The aggregation operator L is:

L =




1 1 0

0 0 1




In order to obtain a realization with integer lumping, the relationship x̃(k) =

Lx(k) must hold. Thus, x̃1(k) = x1(k) + x2(k) and x̃3(k) = x3(k), ∀k. Rewrite this

relationship as:

Ãkx̃(0) = LAkx(0), ∀k, ∀x(0)

⇐⇒




ã11 ã12

ã21 ã22







x1(0) + x2(0)

x3(0)


 =




1 1 0

0 0 1







a11 a12 a13

a21 a22 a23

a31 a32 a33







x1(0)

x2(0)

x3(0)




,∀k, ∀x(0)

⇐⇒




ã11 ã12

ã21 ã22







x1(0) + x2(0)

x3(0)


 =




a11 + a12 a12 + a22 a13 + a23

a31 a32 a33







x1(0)

x2(0)

x3(0)




,∀k, ∀x(0)




ã11(x1(0) + x2(0)) + ã12x3(0)

ã21(x1(0) + x2(0)) + ã22x3(0)


 =




(a11 + a12)x1(0) + (a12 + a22)x2(0) + (a13 + a23)x3(0)

a31x1(0) + a32x2(0) + a33x3(0)




Because this should work for all k and x(0), the following must be true:
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ã11 = a11 + a21 = a12 + a22, ã12 = a13 + a23

ã21 = a31 = a32, ã22 = a33

However, the above four equations are actually the conditions required by ordinary

lumping or exact lumping. It raises a conflict against our assumption that this type of

lumping is not ordinary or exact lumping. Therefore, a third type of integer lumping

does not exist to produce a low-order realization.

2

We can also understand this lemma by thinking in this way: stationary integer

lumpings simply consider the direction of transition probabilities when there are equal

transition probabilities. A node in an automaton can merely have two directions

of transition: incoming and outgoing. Ordinary lumping deals with the outgoing

probabilities and exact lumping considers the incoming probabilities. Thus, they are

the only two stationary integer lumpings to find a realization.

We point out that integer lumping has some interesting properties such as tran-

sitivity and strictly confluency. These properties describe how repeatable integer

lumping can be conducted on the lumped system. However, we do not explain these

properties in the thesis. Further information can be found in [38], which proved that

general lumping and ordinary lumping are transitive, but exact lumping is not.

2.1.2 Problems with Lumping

The previous section shows that integer lumping can preserve a state dynamic

consistency between two HMMs and thus is likely to generate an equivalent low-order

realization of the true system if the true system is lumpable. However, when choosing

the type of lumping, we seem to prefer time invariant systems although general lump-

ing is good at producing a low-order time variant system given an arbitrary transition

matrix. This is because the estimated model obtained from the learning algorithm
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is also time invariant. To measure the modeling error between a realization and an

estimation, it is desirable to compare two time invariant HMMs instead of a time

variant system and a time invariant system. As we mentioned before, a pair (A,C)

can represent a HMM and be regarded as a point in the plane of a set of systems.

On one hand, a time variant transition matrix implies that the point is moving all

the time. On the other hand, a time invariant estimate corresponds to a fixed point.

It is difficult to measure the distance between two points if one of the points is wig-

gling continuously. In this sense, stationary integer lumping are favored over general

lumping. However, there are three problems with stationary integer lumpings.

First, integer lumping is set specific. This means that, even if a true system is

ordinary lumpable or exact lumpable, it can only be aggregated into certain orders.

Moreover, these achievable orders may not be consecutive. It is possible that some

true system of order n can be reduced to a simpler time invariant system of order

m2 but cannot be reduced to time invariant systems of order m1 and m3 where

m1 < m2 < m3.

Example 2.4 Given

A =




1/10 1/20 1/5 1/16 1/4

1/10 2/20 1/20 2/16 0

1/10 3/20 1/20 1/16 1/8

4/10 4/10 4/10 5/16 1/2

3/10 3/10 3/10 7/16 1/8




C =




0.1 0.1 0.1 0.8 0.4

0.9 0.9 0.9 0.2 0.6




Through ordinary lumping, we can get a Ã3
o ∈ R3×3 and C̃3

o ∈ R2×3 by aggregating

the first three states using L:
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Figure 2.5: Output distributions of two HMMs

L =




1 1 1 0 0

0 0 0 1 0

0 0 0 0 1




Ã3
o =




3/10 1/4 3/8

4/10 5/16 1/2

3/10 7/10 1/8




C =




0.1 0.8 0.4

0.9 0.2 0.6




We can verify that, ∀k,∀x(0), x̃(k) = Lx(k) and ỹ(k) = y(k). See Figure 2.5.

In this example, ordinary lumping can generate a 3rd order realization; however,

there is neither a 4th order nor a 2nd order time-invariant system that is able to keep

dynamic consistency. Recall Lemma 2.1.4 in the previous section: with stationary

integer lumping, the transition matrix must be either ordinary lumpable or exact

lumpable in order to produce a time invariant low-order system. If a true system

satisfies ordinary lumpability, the sum of each sub-column within a cluster must

be the same. In the above example, the 5th order system can be lumped to a 3rd

order system. This is so because its transition matrix A satisfies this requirement:

a11 + a21 + a31 = a12 + a22 + a32 = a13 + a23 + a33 = 3
10

, a41 = a42 + a43 = 4
10

and
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Figure 2.6: Systems of different orders

a51 = a52 + a53 = 3
10

. Similarly, to get a low-order system through exact lumping,

the sum of each sub-row within the corresponding clusters must be the same. In this

example, A has none of the above property to be reduced to a system of order two

or four. Thus, it is impossible to get a system of order 2 or 4 that is dynamically

consistent with the true system.

2

This example indicates that for a fixed true system, there will not always be a

series of adjacent time invariant lumped systems of different orders, but only in a

certain order can a time invariant realization exist (also see Figure 2.6).

Second, integer lumping can be conducted only on some specific true systems. Not

every true system can be lumped into a homogeneous low-order system. It is also
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possible that other operators can produce an output distribution the same as that of

the true system, while integer lumping fails to generate a realization.

Example 2.5 Given

A =




1/3 1/4 1/5

1/3 1/2 2/5

1/3 1/4 2/5




C =




7/12 1/2 17/24

5/12 1/2 7/24




No aggregation operator can reduce this 3rd order model into a 2nd order model

(If we want a realization by aggregating the first and the third states in the true

system, a13 must be equal to a33; if we want a lumping by aggregating the second

and the third states, a22 and a32 must be equal.) However, we can find a pair (Ã, C̃)

Ã =




793/1440 11743/27360

647/1440 15617/27360


 C̃ =




1/3 5/6

2/3 1/6




such that ∀k, x̃(k + 1) = Ãx̃(k), ỹ(k) = C̃x̃(k), and ỹ(k) = y(k).

2

Third, integer lumping is not a unique way to achieve a realization. When integer

lumping can produce a realization with an integer aggregation operator, there could

also be another operator that helps to generate the same output as integer lumping

does.

Example 2.6 Given a 3rd order true system

A =




1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3




C =




1/2 1/2 1/2

1/2 1/2 1/2



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If we use an aggregation operator

L =




1 1 0

0 0 1


, we get an Ã =




2/3 1/3

2/3 1/3




that preserves x̃(k) = Lx(k) and gives the same output distribution

ỹ(k) = y(k) =




1/2

1/2


.

But we can also have another lower system pair (Ã, C̃) that can not be computed

from any aggregation operator:

Ã =




1/2 1/2

1/2 1/2


 C̃ =




1/2 1/2

1/2 1/2




such that ∀k, ∀x(0), ỹ(k) = y(k) holds (We cannot obtain (Ã, C̃) from any inte-

ger aggregation operator because if there is an L′ that can produce Ã, then there

should be an entry of value 2
3

in Ã that indicates aggregation from integer lumping).

2

These examples show that integer lumping is not a unique way to generate an equiv-

alent realization. In the situation where integer lumping cannot produce a desired

system, we are still able to find a realization through other type of operators. In

the following, we characterize another type of operator that can generate equivalent

realizations as well.

2.1.3 Weighted Lumping

We explained in the previous section the weakness of integer lumping and showed

that there could be some other operator that helps a low-order system to preserve
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dynamic consistency. In this section, we will introduce a new type of lumping and

explain its relationship with low-order realizations.

Recall the previous two examples. In Example 2.6,

A =




1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3




C =




1/2 1/2 1/2

1/2 1/2 1/2


,

Ã =




1/2 1/2

1/2 1/2


 C̃ =




1/2 1/2

1/2 1/2




there is another operator




1 1/2 0

0 1/2 1




that helps the system preserve dynamic consistency. We verify this below:

x̃(k) =




1 1/2 0

0 1/2 1







x1(k)

x2(k)

x3(k)




= Ãkx̃(0) =




x1(0) + 1/2x2(0)

1/2x2(0) + x3(0)




ỹ(k) = C̃x̃(k) = y(k) = Cx(k) =




1/2x1(k) + 1/2x2(k) + 1/2x3(k)

1/2x1(k) + 1/2x2(k) + 1/2x3(k)




In Example 2.5,

A =




1/3 1/4 1/5

1/3 1/2 2/5

1/3 1/4 2/5




C =




7/12 1/2 17/24

5/12 1/2 7/24




Ã =




793/1440 11743/27360

647/1440 15617/27360


 C̃ =




1/3 5/6

2/3 1/6



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there is another operator




1/2 2/3 1/4

1/2 1/3 3/4




that also helps the lower system to maintain dynamic consistency.

Notice that each entry of in the operator is a real number between [0, 1]. It is

reasonable to extend the notion of integer lumping into real number lumping.

Definition 14 Lw is called a weighted aggregation operator if it is column stochastic,

i.e.

Lw ∈ Rm×n
+ , 0 ≤ li,j ≤ 1,

m∑
i=1

lij = 1, j = 1, . . . , n.

Definition 15 Ln is called a non-weighted aggregation operator if each column of it

sums to 1, i.e.

Ln ∈ Rm×n,
m∑

i=1

lij = 1, j = 1, . . . , n.

Recall the definition of an integer aggregation operator: L ∈ Rm×n
+ , li,j ∈ {0, 1},

m∑
i=1

lij = 1, j = 1, . . . , n. The difference between Lw and L is that each entry in L

can be only either 0 or 1 while Lw can take any real number between [0, 1]. Lumping

with a weighted aggregation operator is called weighted lumping. Lumping with a

non-weighted aggregation operator is called non-weighted lumping. Integer Lumping

is actually a very special case of weighted lumping. Ln further relaxes the constraints

on the operator to include any real number, e.g., negative numbers or entries larger

than 1.

Lemma 2.1.5 Given two column stochastic matrices A ∈ Rn×n and C ∈ Rm×n,

W = CA ∈ Rm×n is a column stochastic matrix.
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Figure 2.7: Relationship of different lower order system sets

Proof Given

A =




a11 . . . a1n

. . . ajr . . .

an1 . . . ann




C =




c11 . . . c1n

. . . cij . . .

cm1 . . . cmn




because A and C are column stochastic,

n∑
j=1

ajr = 1, r = 1, . . . n
m∑

i=1

cij = 1, j = 1, . . . , n.

For each column j in W , we have:

w1j = c11a1j + c12a2j + . . . + c1nanj,

w2j = c21a1j + c22a2j + . . . + c2nanj,

. . .,

wmj = cm1a1j + cm2a2j + . . . + cmnanj.

The sum of jth column is:
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m∑
i=1

wij = a1j

m∑
i=1

ci1 + a2j

m∑
i=1

ci2 + . . . + anj

m∑
i=1

cin = a1j + a2j + . . . + anj = 1.

Therefore, W is a column stochastic matrix.

2

We now have shown that the product of two column stochastic matrices has to be

a column stochastic matrix. The theorem below captures the relationship between

the hidden state vectors and the operator.

Denote L as an operator representing the relationship between x(k) and x̃(k). It

could be lumping operator L, weighted lumping operator Lw or non-weighted lumping

operator Ln.

Theorem 2.1.6 If for L ∈ Rm×n, x(k) ∈ Rn
+ is column stochastic, ∀k, ∀x(0), x̃(k) =

Lx(k), then x̃(k) ∈ Rm is column stochastic if and only if L is column stochastic.

Proof Given 0 ≤ xj(k) ≤ 1,
n∑

j=1

xj(k) = 1, x̃(k) = Lx(k), it is equivalent to prove

{0 ≤ lij ≤ 1 ∩
m∑

i=1

lij = 1, j = 1, 2, . . . , n} ⇐⇒ ∀x(0), {0 ≤ x̃(k) ≤ 1 ∩
m∑

i=1

x̃i(k) = 1}.

Sufficiency (=⇒):

x̃i(k) = li1x1(k) + li2x2(k) + . . . + linxn(k) =
n∑

j=1

lijxj(k).

If 0 ≤ lij ≤ 1, 0 ≤ xj(k) ≤ 1, then 0 ≤ lijxj(k) ≤ xj(k) ≤ 1 ⇒ 0 ≤ x̃i(k) ≤ 1 (1)

m∑
i=1

x̃i(k) =
n∑

j=1

xj(k)
m∑

i=1

lij = 1 · 1 = 1. (2)

(1) and (2) imply that 0 ≤ x̃(k) ≤ 1 and the sum of entries in x̃(k) equals 1. There-

fore, sufficiency holds.

Necessity (⇐=):

41



m∑
i=1

x̃i(k) =
n∑

j=1

xj(k)
m∑

i=1

lij =
m∑

i=1

lij, j = 1, 2, . . . , n (3)

If we want
∑

i

x̃i(k) = 1, then the right hand side of (3) is also equal to 1.
m∑

i=1

lij = 1

means every column in L has to sum to 1. Next we prove that every element in L

has to be between [0, 1]. Suppose that not all the element in L is between [0,1]. Pick

l11 > 1. Since L should satisfy any x(0), we let l11 > 1
x1(k)

(similar proof also applies

if l11 < 1
x1(k)

).

On one hand,

0 ≤ x̃1(k) = l11x1(k) + l12x2(k) + . . . + l1nxn(k) ≤ 1

⇐⇒ 0 ≤ l11x1(k) ≤ 1− l12x2(k)− . . . l1nxn(k) ≤ 1 (4)

One the other hand,

l11 > 1
x1(k)

⇐⇒ l11x1(k) > 1 (5)

(4) and (5) raise a contraction. Therefore, 0 ≤ lij ≤ 1.

2

Example 2.7 This is an example showing that if L is not column stochastic (e.g. a

non-weighted lumping operator), the lower order hidden state vector cannot be col-

umn stochastic. Given

A =




1/3 5/24 1/2

1/3 8/24 4/12

1/3 11/24 7/12




C =




4/5 13/20 1/2

1/5 7/20 1/2




If we have a non-weighted operator
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Ln =



−3/4 9/16 15/8

7/4 7/16 −7/8




we can obtain

Ã =




1 3/4

0 1/4


 C̃ =




3/5 5/7

2/5 2/7


.

Note that each column in Ln sums to 1, but Ln is not stochastic. This implies

that there exists some x(0) which makes x̃(k) not stochastic. For instance, if choose

x(0) =

[
1 0 0

]T

, we get x̃(0) =

[
−1.75 0.75

]T

. Though it seems that x̃(k) =

Lnx(k) would still hold and entries in x(k) still sum to one, the negative elements

prevent the entries in x̃(k) being between [0, 1].

2

Theorem 2.1.6 indicates that if we want to use lumping to obtain low-order re-

alizations, weighted lumping is the furthest extent that we can go. Beyond that,

stochasticity is not guaranteed.

2.1.4 Realizations with Weighted Lumping

In this section, we discuss how weighted lumping can help to determine the exis-

tence of low-order realizations given a true system and how transition and emission

matrices of a low-order realization can be constructed under certain constraints with

weighted lumping.

Lemma 2.1.7 Given a nth order HMM (A,C) and a mth order HMM (Ã,C̃), m < n,

x(k + 1) = Ax(k), x̃(k + 1) = Ãx̃(k),

y(k) = Cx(k) ỹ(k) = C̃x̃(k)

if ∀k, ∀x(0),∃ L s.t. x̃(k) = Lx(k), then ÃL = LA.
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Proof If the state vectors of two systems are related by L, i.e.

∀k, ∀x(0), x̃(k) = Lx(k)

=⇒ ∀k, ∀x(0), Ãkx̃(0) = LAkx(0)

=⇒ ∀k, ∀x(0), ÃkLx(0) = LAkx(0),

=⇒ ∀k, ∀x(0), (ÃkL− LAk)x(0) = 0,

=⇒ ∀k, (ÃkL− LAk) = 0,

=⇒ k = 1, (ÃL− LA) = 0

=⇒ ÃL = LA

2

Lemma 2.1.8 Given a nth order HMM (A,C) and a mth order HMM (Ã,C̃), m < n,

x(k + 1) = Ax(k), x̃(k + 1) = Ãx̃(k),

y(k) = Cx(k) ỹ(k) = C̃x̃(k)

if ∀k, ∀x(0), ∃ L s.t. ÃL = LA, then x̃(k) = Lx(k) if and only if Ã[x̃(0)−Lx(0)] = 0.

Proof If ÃL = LA,∀k, ∀x(0), then

x̃(k)− Lx(k) = Ãkx̃(0)− LAkx(0)

= Ãkx̃(0)− (LA)Ak−1x(0)

= Ãkx̃(0)− ÃLAk−1x(0)

= Ãkx̃(0)− Ã(LA)Ak−2x(0)

= Ãkx̃(0)− ÃÃLAk−2x(0)

= . . .

= Ãkx̃(0)− ÃkLx(0)

= Ãk[x̃(0)− Lx(0)]

When k = 1, if Ã[x̃(0)− Lx(0)] = 0, then x̃(k)− Lx(k) = 0.

Note that if Ã has full rank, we only need to verify if [x̃(0)−Lx(0)] = 0 to determine

if x̃(k)− Lx(k) = 0.
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Lemma 2.1.9 Given a nth order HMM (A,C) and a mth order HMM (Ã,C̃), m < n,

x(k + 1) = Ax(k), x̃(k + 1) = Ãx̃(k)

y(k) = Cx(k), ỹ(k) = C̃x̃(k)

if ∀k, ∀x(0), ∃ L s.t. x̃(k) = Lx(k), then (Ã, C̃) is a realization of (A,C) if C̃L = C.

Proof If C̃L = C, then ỹ(k)− y(k) = C̃x̃(k)− Cx(k) = [C̃L− C]x(k) = 0,∀k.

However, the converse is not true. This is because, if (Ã,C̃) is a realization of (A,C),

then

∀k, ∀x(0), ỹ(k)− y(k) = 0,

=⇒ ∀k, ∀x(0), [C̃L− C]x(k) = 0

=⇒ ∀k, ∀x(0), [C̃L− C]Akx(0) = 0

=⇒ k = 1, ∀x(0), [C̃L− C]Ax(0) = 0

Since it holds for any x(0), [C̃L− C]A = 0

Therefore, if (Ã, C̃) is a realization of (A, C) obtained from lumping, they have to

satisfy [C̃L− C]A = 0.

2

Remark Particularly, if C̃L = C where L is an aggregation operator from integer

lumping, then rank(C̃) = rank(C). To show this, we treat C̃L = C as a block of

linear equations. On the left side, there are 2m variables in C̃; on the right side, there

are 2n equations. m < n means the number of equations are more than the number

of variables. Unless rank(C̃) = rank(C), there will be no solution for C̃L = C.

The above lemmas provide criteria to determine if two HMMs of different orders are

equivalent. In the following, we discuss what kind of emission probability matrix is

able to generate a low-order realization by integer lumping.

Lemma 2.1.10 Given a nth order HMM (A,C) and L ∈ Rm×n
+ , where C ∈ Rh×n,

m < n, if there is a low-order realization that can be found by integer lumping, then
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C has to have m blocks, with each block having ri columns the same as the ith column

in C̃, where ri is the length of 1s in the ith row of L.

Proof From Lemma 2.1.2, we know L has full rank. Through linear row transforma-

tions, we can always rewrite L as:

L =




111 . . . 11r1 0 . . . . . . . . . . . . . . . . . . . . . . . . 0

0 . . . 0 121 . . . 12r2 0 . . . . . . . . . . . . . . . 0

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0 . . . . . . . . . . . . . . . 1i1 . . . 1iri
0 . . . . . . 0

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

...

0 . . . . . . . . . . . . . . . . . . . . . . . . 0 1m1 . . . 1mrm




(2.5)

where the ith row has a number of ri 1s from 1i1 to 1iri
.

Let

C̃ =




c̃11 c̃12 . . . c̃1m

c̃21 c̃22 . . . c̃2m

. . . . . . . . . . . .

c̃h1 c̃h2 . . . c̃hm




denote the mth low-order emission matrix at time instant k.

C̃(k)L =




c̃11 . . . c̃11 c̃12 . . . c̃12 . . . . . . . . . c̃1m . . . c̃1m

c̃21 . . . c̃21 c̃22 . . . c̃22 . . . . . . . . . c̃2m . . . c̃2m

...
...

...
...

...
...

...
...

...
...

...
...

c̃h1 . . . c̃h1 c̃h2 . . . c̃h2 . . . . . . . . . c̃hm . . . c̃hm




= C (2.6)

There are m blocks in (2.6). Within the ith block, there are ri identical columns.

The number of c̃ij in the ith row of C is ri as well. Thus we show that C has to take
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the form of equation (2.6) such that there is a solution to C̃L = C.

2

Example 2.8 Given

L =




1 1 0

0 0 1


, if C̃(k) =




c11 c12

c21 c22


 (k).

Then

C =




c11 c11 c12

c21 c21 c22




2

In the above, we gave some criterion on determining the equivalence of two given

HMMs assuming a lumping operator exists. A more practical question is: Given

a HMM, how do we find a lumping operator and how do we use this operator to

construct a low-order realization (Ã, C̃)? In the following, we present a method to

construct a low-order realization for an arbitrary true system with weighted lumping.

Theorem 2.1.11 Given a nth order Markov chain x(k + 1) = Ax(k), ∃ Lw ∈ Rm×n,

s.t. ∃Ã ∈ Rm×m, x̃(k + 1) = Ãx̃(k) and x̃(k) = Lwx(k).

Proof Construct

Lw =




l1 l1 . . . l1

l2 l2 . . . l2

. . . . . . . . . . . .

lm−1 lm−1 . . . lm−1

lm lm . . . lm




m×n

,
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where 0 ≤ li ≤ 1 and
m∑

i=1

li = 1.

Let B = LwA and denote bij as the entry in ith row jth column. Then we have

bij = li(a1j + a2j + . . . + anj) = li · 1 = li

We also calculate the jth column sum of B:
m∑

i=1

bij =
m∑

i=1

li = 1, j = 1, 2, . . . , n

This indicates that each column in B is identical to each column in Lw. Thus, B = Lw,

i.e., LwA = Lw.

As a result, LwAk = LwA · Ak−1 = LwAk−1 = . . . = Lw (6)

Let

Ã =




l1 l1 . . . l1

. . . . . . . . . . . .

lm−1 lm−1 . . . lm−1

lm lm . . . lm




m×m

Similarly, we can prove that ÃkLw = Lw (7)

Combining (6) and (7), LwAk = ÃkLw = Lw.

Therefore, ÃkLwx(0) = LwAkx(0) ⇒ x̃(k) = Lwx(k).

2

In this way, we relax restrictions on A and build a system that can be any order

lower than the true system, where its state vector can perform dynamically as the

true system does. We show that weighted lumping extends lumping from a binary

partition to a more general class associated with a probability framework. Instead of

giving the interpretation of whether an entry belongs to a partition, we are now able

to assign a probability to each entry in the true system to represent how likely each

entry belongs to different clusters in the low-order system.

Example 2.9 Given
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A =




0.42 0.42 0.31 0.41

0.10 0.36 0.17 0.33

0.27 0.21 0.23 0.08

0.21 0.01 0.29 0.18




and C =




0.5505 0.5505 0.5505 0.5505

0.4495 0.4495 0.4495 0.4495


,

using

Lw =




0.56 0.56 0.56 0.56

0.41 0.41 0.41 0.41

0.03 0.03 0.03 0.03




,

we can find

Ã =




0.56 0.56 0.56

0.41 0.41 0.41

0.03 0.03 0.03




and C̃ =




0.58 0.50 0.69

0.42 0.50 0.31


.

We verify that

LwA = ÃLw =




0.56 0.56 0.56 0.56

0.41 0.41 0.41 0.41

0.03 0.03 0.03 0.03




and C̃Lw = C.

2

Note that with this method, every column in the weighted lumping operator Lw is

identical. Moreover, to ensure the existence of a low-order realization with weighted

lumping, the emission matrix must have identical columns as well. If C does not have

identical columns, it is unable to find a C̃ such that C̃Lw = C. However, a HMM

satisfying this requirement of C will lose its dynamics. No matter how the hidden

states change, the output ỹ(k) will now take the values from one of the identical
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columns in C and stay in that distribution forever. In other words, there is no

”hidden ” information any more in the HMM.

It is also noted that the probabilities within each column of Lw can take any

positive real numbers between [0, 1]. This implies that there are various weighted

lumping operators which will lead to multiple low-order realizations.

In addition, if we examine the observability matrix O in the above example,

rank(O)=1. From Lemma 2.1.1, we know that this true system is unobservable and

non-minimal. Therefore, weighted lumping is simply an approach that can generate

a low-order equivalent realization from non-minimal systems.
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Chapter 3

Approximations of Minimal

Systems

The previous chapter discussed equivalent realizations of two HMMs. We showed

that generated by lumping or weighted lumping, systems of order lower than the true

system but higher than the minimal system are actually equivalent realizations of un-

observable HMMs. These unobservable HMMs are non-minimal systems. Compared

to the realization problem, what is more interesting is to study approximations of

minimal systems when they do not have low-order realizations.

3.1 Lower-order Approximations of Minimal Systems

An approximation problem is different from the realization problem in that there

is not a low-order system than can generate the same output distribution as the

true system. Rather than finding a realization that has a zero distance to the true

system, the approximation problem aims at identifying low-order best approximations

that have a minimal distance to the true system and characterizing the relationship

between different low-order approximations of a minimal system. Furthermore, it

is different from an estimation problem because instead of choosing a system given
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data as the learning algorithm does in estimating all the parameters, it selects an

approximated system from the candidate systems given the true system.

Recall from the previous chapter the definition of an approximation: given a true

system (A,C) of order n, (Ã, C̃) is said to be an approximation of (A,C) if the

distance is nonzero; among all the systems that have nonzero distance to the true

system (A, C), (Ã, C̃) is a best approximation of (A,C) if the distance from (Ã, C̃) to

the true system is minimal. A best approximation problem can be written as:

min
(Ã,C̃)∈S

d((A,C), (Ã, C̃))

where S is a set of candidate systems of order m < n. Since we measure the distance

between HMMs by their output distributions, the best approximation problem can

be also written as:

min
(Ã,C̃)∈S

d((A,C), (Ã, C̃)) = min
(Ã,C̃)∈S

min
x̃o

max
xo

‖ y(k)− ỹ(k) ‖2 (3.1)

This criterion first assumes the worst case of an initial condition in the true system

by using max
xo

. Another possible choice other than a max could be an average opera-

tion among outputs of all time steps. The reason why we choose a max operation is

that the worst case of an initial condition choice of the true system would represent

the potential upper bound of the distance between two systems. If we could find the

minimal distance in the worst case, we might be able to put a constraint on the lower

bound and determine the minimal distance for all the other cases.

Under the measurement of a 2-norm, the equation will search all the possible

systems in the low-order candidate set and every possible low-order initial condition

in the state space (using min
x̃o

) in order to minimize the difference between output

distributions from the observation sequences.

The 2-norm of a vector y = [y1 . . . yn]T is defined as:

‖ y ‖2=

√√√√
n∑

i=1

|yi|2 (3.2)
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2-norm is one of the most commonly used norms and enjoys the geometric meaning

of the sum of the total area under the curve of the vector. We could also use the

infinity-norm, but we expect that the measuring results will be similar no matter

what norm is chosen.

With this criterion, we are interested in describing the relationship among best

approximations of different orders. As we discussed in the previous chapter that

best approximations of order strictly less than that of a minimal system are truly

approximations, they are unable to behave in an exact manner as the true system

does. This means that the distance between two HMMs is non-zero. We want to

explore how the distance from a best approximation to a true system varies as the

order of an approximation changes. We prove in the following that the resulting

approximation error is non-decreasing as the model order decreases, verifying our

prediction that increasingly coarse models are less and less descriptive of the true

system.

Theorem 3.1.1 Given a minimal system (A,C) of order n, and given two low-order

systems (Ãm1 , C̃m1) and (Ãm2 , C̃m2), where (Ãm1 , C̃m1) is a best approximation of

(A,C) at order m1, (Ãm2 , C̃m2) is a best approximation of (A,C) at order m2, 0 <

m2 < m1 < n, then d((A,C), (Ãm2 , C̃m2)) ≥ d((A,C), (Ãm1 , C̃m1)).

Proof Presume that the distance from (Ãm1 , C̃m1) to the true system (A,C) is larger

than the distance from (Ãm1 , C̃m1) to (A,C), that is

d((A, C), (Ãm2 , C̃m2)) < d((A, C), (Ãm1 , C̃m1)) (3.3)

∀x̃m2(0), construct another system (Ã′
m1 , C̃

′
m1) of order m1 as:

x̃′m1(k + 1) = Ã′
m1x̃

′
m1(k) =




Ãm2 0

0 Im1−m2


 x̃′m1(k),
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ỹ′m1
(k) = C̃ ′

m1x̃
′
m2(k) =

[
C̃m2 D2,m1−m2

]
x̃′m2(k),

x̃′m1(0) =




x̃m2(0)

0




Then

ỹ′m1
(k) = C̃ ′

m1Ã
′k
m1

x̃′m1(0);

=

[
C̃m2 D2,m1−m2

]



Ãm2 0

0 Im1−m2




k 


x̃m2(0)

0




=

[
C̃m2Ã

k
m2

D2,n−m

]



x̃m2(0)

0




= C̃m2Ã
k
m2

x̃m2(0)

= ỹm2(k)

This means (Ã′
m1 , C̃

′
m1) and (Ãm2 , C̃m2) are equivalent realizations, that is

d((A, C), (Ãm2, C̃m2)) = d((A,C), (Ã′
m1, C̃ ′

m1)) (3.4)

By the presumption in (3.3),

d((A,C), (Ãm2 , C̃m2)) < d((A,C), (Ãm1 , C̃m1))

By substituting (3.4) into (3.3), we have

d((A,C), (Ã′
m1 , C̃

′
m1)) < d((A,C), (Ãm1 , C̃m1)) (3.5)

(3.5) suggests that other than (Ãm1 , C̃m1), another system (Ã′
m1 , C̃

′
m1) can be found

which has a shorter distance to the true system (A,C) than (Ãm2 , C̃m2) does. It

contradicts the definition of best approximation in which a best approximation of a

minimal system always has the shortest distance to the true system. Therefore,

d((A,C), (Ãm2 , C̃m2)) ≥ d((A,C), (Ãm1 , C̃m1)).

In other words, as the order of approximations becomes lower, the distance between

a best approximation and a true system is nondecreasing. It also indicates that the
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Figure 3.1: Approximation errors of different order systems

distance from one best approximation to another best approximation of a different

order is nonnegative (see Figure 3.1).

2

Lemma 3.1.1 indicates that, more and more information of the true system is

losing when the size of an approximation is shrinking; systems with decreasing orders

are less and less descriptive of the true system.
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Chapter 4

Conclusions and Future Work

This thesis characterizes the quality of Hidden Markov modeling when learning

from limited data. It introduces a new perspective to describe the sources of under-

modeling errors by decomposing the modeling errors into two fundamental categories:

first, the approximation error which describes the distance between the true system

and a system of order lower than the true system; and second, the estimation error

which refers to the modeling error coming from the learning algorithm with finite ob-

servational data. This thesis investigates the approximation error of low order HMMs

and further classifies a best approximation into an approximation and a realization.

4.1 Conclusions

Best approximations which assume the smallest distance from the approximated

system to the true system can be described by the notion of minimality; realizations,

as a special type of approximations with complexity greater or equal to the order of

a minimal system, are equivalent to the true system. The equivalence of two systems

is evaluated by the notion of dynamic consistency and a distance measurement is

provided to calculate the minimality. To show the relationship between minimality

and observability, this thesis proves that an observable system is a minimal system.

For realizations of non-minimal systems, this thesis also examines the properties of
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integer lumping and presents a more general method named weighted lumping to

construct realizations of a non-minimal system. Examples and experiments have

been conducted with this method and results show that a stochastic transition matrix

can be randomly chosen and turned into a system of lower order such that hidden

states between the true system and the low order system are dynamically related

by a particular aggregation operator. It is also shown that best approximations of

order strictly less than that of a minimal realization are truly approximations; they

are usually unable to precisely reproduce the output distribution of the true system.

The work then proves that the resulting approximation error is non-decreasing as the

model order decreases, which verifies the intuitive idea that increasingly simplified

models are less and less descriptive of the true system.

4.2 Future Work

As a next step to characterize HMM undermodeling errors, we would like to prove

the strict monotonicity of distance from the best approximation to the true system as

the order of the approximation decreases. We have already proved the non-decreasing

property of the distance. A future proof of an increasing distance property would be

very important because it would help to more precisely describe the tradeoff between

uncertainty and complexity. We would also like to explicitly define the mathematical

meaning of precision and accuracy in order to refine the entire modeling error picture

in terms of complexity. Furthermore, we would like to examine order estimation

approaches more closely and investigate the possible existence of a unique minimal-

error system which would be able to mimic the true system to the greatest extent with

limited data. One of our ultimate goals is to verify the entire picture we proposed as

it is shown in Figure 4.1. We would like to show that not only the the approximation

error is increasing, but also the estimation error is decreasing as the order of the

system decreases; with these two modeling errors, we would be able to describe the
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Figure 4.1: The whole picture of three types of modeling errors

modeling errors between the true system and the system estimated from the learning

algorithm.

In terms of weighted lumping, we want to find a more general description of

emission matrices such that the restricted scope of HMM choices can be released. In

addition, we are looking for various applications of our approximation model in the

fields of ecology, bioinformatics, and hydrology so that we will be able to examine

its practicability in simplifying complicated natural systems and phenomena into

abstracted computable mathematical models.
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Chapter 5

Appendix

5.1 Transform a nth order difference equation to n first-order equations

Proof An nth order difference equation

y(k + 1) = a1y(k) + a2y(k − 1) + . . . + any(k − n + 1)

can be written as a system of n first-order difference equations by defining vector

z(k + 1) =




y(k + 1)

y(k)

. . .

y(k − n + 2)




Rewrite z(k + 1) as

z(k + 1) =




y(k + 1)

y(k)

. . .

y(k − n + 2)




=




a1 a2 . . . . . . an

1 0 . . . . . . 0

. . . . . . . . . . . . . . .

0 0 . . . 1 0







y(k)

y(k − 1)

. . .

y(k − n + 1)




= Az(k)

Thus, the original nth order system y(k) =
n∑

i=1

aiy(k − i + 1) can now be repre-

sented as z(k + 1) = Az(k), which is a first-order system.

2
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5.2 Derivation of the second condition in general lumping

ãpq(k) =
∑

j:sj∈S̄q

λjq(k)
∑

i:si∈S̄p

aij, where λjq(k) = Pr[sj|sh ∈ S̄q]

Proof .

Let si denote the node representing the ith state in the state vector x(k) at time k

and sk+1
i denotes the ith node at time (k + 1). For node si grouped in cluster S̄p and

node sj in cluster S̄q, according to the Total Probability Theorem[50], the transition

probability ãpq(k) from cluster S̄q to S̄p in the low-order model at time k is:

ãpq(k) = Pr[sk+1
i ∈ S̄p|sh ∈ S̄q]

=
∑

j:sj∈S̄q

Pr[sk+1
i ∈ S̄p|sj] · Pr[sj|sh ∈ S̄q]

This transition probability can be thought of as: summing up all the possible

ways that every current node sj in cluster S̄q transfers to an arbitrary node in cluster

S̄p. This probability is also the conditional probability that sj transfers to any other

node in cluster S̄p given the current state node sj belongs to cluster S̄q. Let λjq(k)

denote the conditional probability of node sj in cluster S̄q at time k,

λjq(k) = Pr[sj|sh ∈ S̄q] =
Pr[sh ∈ S̄q|sj] · Pr[sj]

Pr[sh ∈ S̄q]
(5.1)

For a specified partition, the probability that whether the current state node

belongs to a cluster or not is either 1 or 0, i.e. Pr[sh ∈ S̄q|sj] = 1 if sj ∈ S̄q and

Pr[sh ∈ S̄q|sj] = 0 if sj * S̄q. Thus the nonzero part of λ should be:

λjq(k) = Pr[sj|sh ∈ S̄q] =
Pr[sj]

Pr[sh ∈ S̄q]
=

xj(k)

x̃m(k)
(5.2)

where xj(k) is the jth hidden state value before aggregation and x̃q(k) is the qth state

value after aggregation.

From the definition of Markov chains,

Pr[sk+1
i ∈ S̄p|sj] =

∑

i:si∈S̄p

Pr[sk+1
i |sj] =

∑

i:si∈S̄p

aij (5.3)
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Therefore, ãpq(k) =
∑

j:sj∈S̄q

λjq(k)
∑

i:si∈S̄p

aij, where λjq(k) = Pr[sj|sh ∈ S̄q].

2

When a transition matrix is partitioned into sub-matrices, this formula first sums up

the entries column-wisely within each sub-matrix in the partition. Then by multiply-

ing the sum with the corresponding conditional probability, the aggregated transition

probability can be calculated. Conditional probabilities serve as weights on the atomic

entries in the original system.
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