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Abstract— In this paper we discuss alignment distance for
measuring path deviation between curves. We compare prop-
erties of the alignment distance to both p-norms and the Haus-
dorff distance to argue its superiority for use in path following
problems. While problems of finding an optimal parameteriza-
tion of a fixed input curve to a tracking system are not new,
typical formulations focus on parameterizations that minimize
transversal time while respecting certain system constraints;
on-line governors can then be employed that choose a path
velocity in real time, trading off computational complexity and
time-optimality. By explicitly characterizing the error measure
implicit in path control problems, we revisit the off-line, open
loop parameterization problem to explore the inherit trade-
offs between command shape, command parameterization, and
system dynamics. The utility of the alignment distance as a tool
for elucidating these fundamental tradeoffs is demonstrated on
a simple PD-controlled mass system.

I. BACKGROUND

Path control problems differ from tracking problems in

that performance is measured with respect to the path,

or image set of a curve, instead of a particular time-

parameterization of the curve. Examples are common, in-

cluding driving a car along a winding road. Our primary

objective is to stay on the road, even when trying to navigate

it quickly. This objective is manifest by our common sense

reaction to slow down when conditions change, such as in

the presence of rain or ice; we know that if we go slow

enough we can avoid exciting the undesirable dynamics

resulting from poor weather. This ability to slow down,

or reparameterize the reference command in time, offers

an extra degree of freedom in path control problems that

sacrifices travel time for better path following.

Navigation is not the only application of path following

problems, however. Production, manufacturing, and assembly

processes are all often amenable to a path following formula-

tion since the quality of the resulting product can typically be

measured independent of the particular manufacturing sched-

ule or processing time [10]. For example, a high performance

vertical cavity surface emitting laser, a well-manufactured

car, or a reliable laptop are quality products regardless of
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how long it took to produce them. Furthermore, applications

in robotics and studies of human movement often consider

path following objectives, and related problems are beginning

to emerge in areas as diverse as web services, drug design,

and organizational behavior.

The simplest approach to solving path control problems

is to reduced them to tracking problems. A parameterization

of the input is chosen, possibly for its simplicity, and the

system is designed to track the resulting trajectory. Three

approaches are common in the resulting tracking design. The

first approach employs asymptotic tracking as a performance

objective and appeals to regulator theory for a solution [2].

Internal models in the feedback system ensure that any

desired trajectory from a specified class of trajectories is

eventually tracked, even in the presence of model uncertainty.

This approach yields perfect path following after initial

transients die away. As extensions to nonlinear systems

emerged, inversion-based methods have offered lower com-

plexity alternatives to regulator designs by focusing on exact

output tracking instead of asymptotic convergence [9]. These

methods can yield great path following for a particular

curve, even during transients. Nevertheless, inversion-based

methods can also be very sensitive to model uncertainty,

since the system dynamics are essentially inverted to discover

the inputs necessary to yield the desired trajectory. The last

approach uses loop shaping to determine a feedback design

that tracks trajectories with frequency content in a range

where tracking performance, usually measured by the energy

or peak value of the error, is small [11]. This approach can

offer optimal trade-offs between robustness and performance,

but small errors in performance can still yield large path

errors. Each of the three design approaches may yield poor

path following because they are solving a different problem.

More recently, variations of the path following problem

have been proposed that explicitly leverage the ability to

reparameterize the input to improve performance. In robotics,

researchers have typically considered the minimum time

necessary to transverse a desired path under torque or force

constraints [4], [3], [7]. Off-line techniques pre-compute

an optimal parameterization of the command and then use

tracking designs to deliver good performance. These methods

are typically computationally intensive and can be sensitive
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to model uncertainty. On-line methods first design a tracking

controller to yield good performance for a nominal trajectory,

then an outer-loop “velocity controller” or “path governor”

is employed to change parameterization in real time. These

closed-loop methods have the advantage of being responsive

to model uncertainty, but the computational complexity of

making real-time calculations can force sub-optimal perfor-

mance compared to the off line approaches. In either case,

however, the primary concern is typically reparametrizing the

command so that it is time-optimal while satisfying input and

state constraints.

Another approach to the path following problem has been

to convert the existing tracking controller to a path follower

[5]. This is accomplished by computing a function that

maps the current system state to a command time, thereby

slowing commands as the actual path deviates from the

desired maneuver. This approach sheds light on how the

dynamics of the tracking system can be easily inherited by

a path following system. The objective of this more general

framework is to slow down as needed to guarantee transverse

stability and hence, ultimate convergence to the desired path.

This study revisits the off-line, open-loop parameterization

problem to better understand the relationship between the

shape and parameterization of a command with the dynamics

of a path-following system. The next section details our mo-

tivation for revisiting this problem, and Section III introduces

the alignment distance in contrast with alternative metrics.

Section IV then formulates our path following parameteri-

zation problem, and Section V discusses the solution for a

simple example.

II. MOTIVATION

Our motivation is to better understand how to characterize

the relationship between the intrinsic qualities of a command,

its extrinsic qualities, and performance that is imposed by

the dynamics of a given path following system. The intrinsic

qualities of a command include its shape and arc length,

and they essentially capture the notion of complexity of a

given task. Extrinsic qualities include the parameterization

of the command and its embedding in the domain of the

path following system. These properties also contribute to

the inherit difficulty of a system in following the command,

essentially entailing how the command is realized in time

and presented to the dynamic system. Finally, performance

is captured by the deviation of the system from the image

of the command, and in the total time needed to transverse

the command within a specified error. This dual notion of

performance is important, as it highlights the fact that path

following systems inherently trade-off safety with speed, or

quality with throughput.

Given a path following system, we would ultimately

like to characterize commands a priori by their difficulty

with respect to that system. Such a characterization would

be useful to path planning systems to help them discern

the easiest command that accomplishes a desired mission.

For example, there may be many commands that deliver

comparable mission results, yet these commands may differ

considerably in their difficulty. This is the case when multiple

laser designs yield products with comparable characteristics

(wavelength, output power, etc.), yet the manufacturability

of different designs may vary significantly. Likewise, when

an unmanned aerial vehicle must avoid obstacles to reach its

destination, some paths may be easier than others. Moreover,

knowing how different systems perceive difficulty of a com-

mand can strongly impact the coordination process between

multiple systems.

A natural way to characterize the difficulty of commands

would be to identify a command with the resulting per-

formance function e.g. achievable quality for a specified

transversal time. One could then adapt a number of mean-

ingful measures to the particular application, such as the

maximal quality for a fixed transversal time, or the minimal

transversal time for a fixed quality, etc. Nevertheless, such

notions hinge on a precise characterization of quality. In path

following problems, such a characterization has essentially

been avoided by formulating performance as minimal time,

with the desired path taken as a constraint to be satisfied

exactly. In this work, the alignment distance is developed as

the natural quality metric for path following problems. To

make our notions precise, we assume that the closed-loop

system, characterized by the transfer function matrix H(s),
will asymptotically track steps, ensuring that lims→0 H(s) =
I , where I is the identity. Although model uncertainty could

disrupt these assumptions, is seems reasonable for many

applications to suggest that there is a region of “low enough”

frequency where the system is well known and designed for

good path following.

III. ALIGNMENT DISTANCE

Consider two parameterized plane curves α(s) =
{α1(s), α2(s)} : [ 0 a ]→ R

2 and β(s) = {β1(s), β2(s)} :
[ 0 b ]→ R

2, where [ 0 1 ] denotes the closed unit interval,

and a and b are fixed positive numbers. Let α refer to the

trace or image of the curve α(s); that is, the trace, α, is

a set of points in R
2, while the curve, α(s), is a function.

A common question that arises in many applications, and

path following in particular, is how to measure the distance

between the traces α and β.

One approach is to identify the curve domains through a

monotonically increasing function z :[ 0 a ] → [ 0 b ], and

then consider the metric

dp(α, β) = ‖α(s)− β(z(s))‖p

where ‖·‖p denotes the standard p-norm for functions defined

on the interval [ 0 a ]. A characteristic of these metrics is

that they depend on the parameterization s or the map z; the

distance between the same traces varies depending on how

they are parameterized. (See Figure 1.) This property makes

them undesirable for path following problems.

Another approach is to consider a set-based metric like

the Hausdorff distance, given by

dH(α, β)max{sup
p∈α

inf
q∈β
‖p− q‖, sup

q∈β

inf
p∈α
‖p− q‖}
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Fig. 1. An illustration of the effect of recrystallization on the p-norms. a) α
and β are two curves in R

2. z(s) is chosen such that α(s) maps to β(z(s))
as shown by the connecting vertical lines. b) This plot is similar to panel a)
with the exception that a different parameterization, z′(s) is chosen. c) The
quantity α(s)− β(z(s)), used in the calculation of the p-norms, is shown.
d) This plot is similar to panel c) except that z′(s) is used. Note that this
recapitalization would dramatically effect the resulting p-norms.

where ‖ · ‖ here is the Euclidean norm. This metric operates

on the traces directly, as sets in R
2, and thus has the

desirable property of being independent of parameterization.

Nevertheless, unlike an arbitrary set, traces of curves are

one-dimensional objects that can be ordered naturally; the

failure of the Hausdorff distance to necessarily respect this

orderability property makes it undesirable for path following

problems since it can be a misleading measure of how far

one curve deviates from another. (See Figure 2.)

β

α

a) b) α

β

Fig. 2. An illustration of the inability of the Hausdorff distance to
accurately reflect the tracking error between two paths. a) The test case is a
circular path, α, and a nearly circular path β. β deviates from a circle near
the 12 o’clock position, takes an excursion to near the 6 o’clock position,
and then returns. Fine red lines show instances of infq∈β ‖p − q‖, that is,
the minimum distance to any point on α for every point on β. b) This is
a magnified portion of panel a) near the 12 o’clock position. Fine red lines
show instances of infp∈α ‖p − q‖, that is, the minimum distance to any
point on β for every point on α. Note that neither side of the Hausdorff
distance produces a value that reflects the true excursion of β from α in a
path tracking sense: approximately the diameter of α.

A metric that would be useful for path following problems

needs to not only be independent of parameterization, but

also preserve the orderability property intrinsic to the traces

of curves. It should capture a notion of how far one curve

deviates from the other as they are each transversed by some

parameterization. One possibility is the alignment distance,

and given by

d(α, β) = inf
z(t)

sup
t
‖α(t)− β(z(t))‖

where here ‖ · ‖ is the Euclidean norm and z is a mono-

tonically increasing function as defined earlier. This metric

describes the radius of the smallest tube centered on one

curve and containing the other as it is continuously trans-

versed from beginning to end.

The alignment distance was originally proposed by Mau-

rice Frechet [6]. Later, it was shown that for two polygonal

curves with m and n points respectively, the alignment

distance can be computed in O(mn log(mn)) time [1].

Recently, an O(mn log(mn)) time algorithm has been found

to compute the alignment distance between two piecewise

smooth curves having n well-behaved pieces [8]. This paper

introduces the use of the Frechet metric to formulate the path

following reparameterization problem.

IV. REPARAMETERIZATION PROBLEM

Equipped with the alignment norm, the path following

reparameterization problem can be posed in alternate forms.

The first form resembles the problem that has been most

studied in the literature, as it emphasizes a minimum time

transversal of the command with path error presented as

a constraint. This problem differs from the more common

formulation, however, in that the path is not expected to be

followed exactly, but may exhibit an error γ as measured by

the alignment norm.

Problem 1: Minimum-Time Fixed-Error Given a square

MIMO system, H, with n inputs and outputs, a fixed error

tolerance γ > 0, and a rectifiable curve u(s) : R → R
n of

length S and arc length parameter s, find t(s) : R→ R such

that
inft(s) t(S)
subject to :

d(u(t),Hu(t)) ≤ γ
dt
ds

> 0
t(0) = 0

Let us call this problem MTFE(γ).
This problem finds a reparameterization of the command u

that minimizes transversal time while keeping the alignment

distance between the commanded input and the actual output

less than a fixed number γ. Note that the constraint on

dt/ds being positive simply keeps the path parameter from

reversing direction or stopping along the curve. A variation

of the problem is to minimize the path error while keeping

the transversal time fixed. This problem becomes:

Problem 2: Minimum-Error Fixed-Time Given a square

MIMO system, H, with n inputs and outputs, a fixed time

T > 0, and a rectifiable curve u(s) : R → R
n of length S

and arc length parameter s, find t(s) : R→ R such that

inft(s) d(u(t),Hu(t))
subject to :

t(S) ≤ T
dt
ds

> 0
t(0) = 0

Let us call this problem MEFT (T ). Ideally, one would

like the parameterization t that simultaneously minimizes

both of these problems. One can realize this parameterization

by iteratively solving the problems, where the optimal time
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given an error from Problem 1 is substituted in the constraint

in Problem 2 to yield a new optimal error for Problem 1,

etc. This parameterization is important because it reveals the

desired tradeoff between shape and performance for a given

path following system and suggests that the problems are in

some senses, equivalent.

Finally, note that these problems consider the infimization

of two distinct parameterizations, t and z (z is under-

stood in the definition of the alignment distance). Since

the concatenation of two proper reparameterizations is itself

just another reparameterization, one may wonder whether

formulations considering both are necessary. It turns out that,

in fact, they are both critical to the problem. The function

t reparameterizes the input command u, and hence changes

the shape of the output curve Hu. The function z, on the

other hand, does not affect the shape of either curve, but is

used to reparameterize one of the curves after they have been

generated in order to capture the alignment distance between

them.

V. SECOND ORDER EXAMPLE

To illustrate how the path following reparameterization

problem is affected by use of the alignment norm, we select

a dynamic system and construct an example. The system is

given by:








v̇x

ẋ
v̇y

ẏ









=









− b
m
− k

m
0 0

1 0 0 0
0 0 − b

m
− k

m

0 0 1 0

















vx

x
vy

y









+









k
m

0
0 0
0 k

m

0 0













ux

uy



 (1)

This is a second-order system, a representation of an

isotropic mass-spring-damper system constrained to move in

a plane. k is the spring constant, b is the damping coefficient,

and m is the mass of the system. This system differs slightly

from a PD-controlled mass in that the damper is to ground,

rather than to the commanded position.

Now, consider a curve α(s), where s is the arc length

parameterization. For the second-order system we selected,

we can determine the input necessary to generate α(s(t))
for any proper reparameterization (i.e. ds

dt
> 0) of s(t) by

substitution: For α(s(t)) = {αx(s(t)), αy(s(t))},

x(t) ← αx(s(t)) (2)

y(t) ← αy(s(t)) (3)

vx(t) ←
∂αx

∂s

∂s

∂t
(4)

vy(t) ←
∂αy

∂s

∂s

∂t
(5)

v̇x(t) ←
∂αx

∂s

∂2s

∂t2
+

∂2αx

∂s2

(

∂s

∂t

)2

(6)

v̇y(t) ←
∂αy

∂s

∂2s

∂t2
+

∂2αy

∂s2

(

∂s

∂t

)2

(7)

This yields the following second-order differential equa-

tions of motion:

∂αx

∂s

∂2s

∂t2
+

∂2αx

∂s2

(

∂s

∂t

)2

+

b

m

∂αx

∂s

∂s

∂t
+

k

m
αx(s(t)) =

k

m
ux (8)

∂αy

∂s

∂2s

∂t2
+

∂2αy

∂s2

(

∂s

∂t

)2

+

b

m

∂αy

∂s

∂s

∂t
+

k

m
αy(s(t)) =

k

m
uy (9)

Solving for for the x and y components of u(s(t)):

ux(s(t)) = αx(s(t)) +

[

m

k

∂αx

∂s

∂2s

∂t2
+

m

k

∂2αx

∂s2

(

∂s

∂t

)2

+
b

k

∂αx

∂s

∂s

∂t

]

(10)

uy(s(t)) = αy(s(t)) +

[

m

k

∂αy

∂s

∂2s

∂t2
+

m

k

∂2αy

∂s2

(

∂s

∂t

)2

+
b

k

∂αy

∂s

∂s

∂t

]

(11)

Fixing s(t) for the moment, consider the ∞-norm of the

error:

sup
t

‖u(s(t))− α(s(t))‖22 = (12)

sup
t

∥

∥

∥

∥

[

ux(s(t))
uy(s(t))

]

−

[

αx(s(t))
αy(s(t))

]∥

∥

∥

∥

2

2

= (13)

sup
t

(

[

m
k

∂αx

∂s
∂2s
∂t2

+ m
k

∂2αx

∂s2

(

∂s
∂t

)2
+ b

k
∂αx

∂s
∂s
∂t

]2

+
[

m
k

∂αy

∂s
∂2s
∂t2

+ m
k

∂2αy

∂s2

(

∂s
∂t

)2
+ b

k

∂αy

∂s
∂s
∂t

]2
)

(14)

Now consider the “alignment norm”, that is, allow for

reparameterization of α:

sup
t

inf
z(t)
‖u(s(t))− α(z(t))‖22 =

sup
t

inf
z(t)

([αx(s(t))− αx(z(t))]+

[

m

k

∂αx

∂s

∂2s

∂t2
+

m

k

∂2αx

∂s2

(

∂s

∂t

)2

+

b

k

∂αx

∂s

∂s

∂t

])2

+([αy(s(t))− αy(z(t))]+
[

m

k

∂αy

∂s

∂2s

∂t2
+

m

k

∂2αy

∂s2

(

∂s

∂t

)2

+
b

k

∂αy

∂s

∂s

∂t

])2

(15)
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Expanding ‖u(s(t)) − α(z(t))‖22 and regrouping terms,

several observations allow simplification. In particular, note

that since s is the arc length parameter, we have
(

∂αx

∂s

)2

+

(

∂αy

∂s

)2

= 1 (16)

(

∂2αx

∂s2

)2

+

(

∂2αy

∂s2

)2

= κ2 (17)

where κ is the curvature of the path, and
(

∂2αx

∂s2

∂αx

∂s

)

+

(

∂2αy

∂s2

∂αx

∂s

)

=
[

∂2αx

∂s2

∂2αy

∂s2

]

[

∂αx

∂s
∂αy

∂s

]

(18)

= κn̂ · t̂ (19)

where n̂ and t̂ are the unit normal and tangent vectors,

respectively. Since they are orthogonal, n̂ · t̂ = 0, we find
(

∂2αx

∂s2

∂αx

∂s

)

+

(

∂2αy

∂s2

∂αx

∂s

)

= 0 (20)

As a result, after some manipulations the argument of

Equation 15 simplifies to three main terms:

‖u(s(t))− α(z(t))‖22 = A+ B + C (21)

where

A =



κ2

[

m

k

(

∂s

∂t

)2
]2

+

[

m

k

∂2s

∂t2
+

b

k

∂s

∂t

]2


 (22)

B = [(αx(s(t))− αx(z(t)))2+

(αy(s(t))− αy(z(t)))2] (23)

C = 2[αx(s(t))− αx(z(t))]∗
[

(

m

k

∂αx

∂s

∂2s

∂t2

)

+

(

m

k

∂2αx

∂s2

(

∂s

∂t

)2
)

+

(

b

k

∂αx

∂s

∂s

∂t

)]

+

2[αy(s(t))− αy(z(t))] ∗
[

(

m

k

∂αy

∂s

∂2s

∂t2

)

+

(

m

k

∂2αy

∂s2

(

∂s

∂t

)2
)

+

(

b

k

∂αy

∂s

∂s

∂t

)]

(24)

It is interesting to note that in the case of z(s(t)) = s(t),
terms B and C both become zero, and A = (u(t)− α(t))

2
.

This is simply the distance between u(s(t)) and α(s(t))
without considering alignment. Given our system, this can

be verified by looking at the forces that act on the mass and

solving for F = ma. Tangential and radial directions can

be considered decoupled due to the isotropic nature of our

system. First in the tangential direction:

Ft = k(ut(s(t))− αt(s(t)))− b

(

∂s

∂t

)

= m
∂2s

∂t2
(25)

⇒ ut(s(t))− αt(s(t)) =
m

k

∂2s

∂t2
+

b

k

∂s

∂t
(26)

where k is the spring constant, b is the damping coef-

ficient,and m is the mass of the system. Both the spring

stiffness and the damping exert forces in the tangential

direction, resulting in a given tangential acceleration. Then

in the radial direction:

Fr = k(ur(s(t))− αr(s(t)))

= κ

(

∂s

∂t

)

(27)

ur(s(t))− αr(s(t)) = κ
m

k

(

∂s

∂t

)2

(28)

where κ(s) is the curvature at a given point a distance s
along the path. It is then straightforward to show that:

(u(s(t))− α(s(t)))
2

= [ut(s(t))− αt(s(t))]
2 +

[ur(s(t))− αr(s(t))]
2

= A (29)

Let the quantity ut(s(t))−αt(s(t)), the distance between

the commanded point and the actual point at a given time, t,
be called the “tracking error”. The tracking error has a clear

physical interpretation, but, as was previously discussed, it

does not necessarily reflect the quality of the path following

performance. The following example will illustrate this.

Figures 3 and 4 provide a simple example highlighting

the differences between the tracking error (generated when

employing p-norms as a metric for path error), the “nearest-

point distance” (generated when employing the Hausdorff

distance as a metric for path error), and the alignment dis-

tance. In particular, we solve Problem 2 for an elliptical input

using each of these error measures in the objective function.

We then command each of the resulting reparameterized

inputs and observe the system response.

The choice of distance measure strongly affects which

parameterizations are judged to be good performers and

which are not. Attempting to minimize one distance metric

can result in very poor performance in others. As shown in

Figure 4 reparameterizing the input to minimize a p-norm

results in poor path following performance. The nearest-

point distance results in far better tracking performance, yet

it fails to capture the most critical piece of information:

the worst case deviation from the commanded path. In this

simple example, the alignment distance occurs in nearly the

same location as the maximum of the nearest-point distance,
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Fig. 3. a) The bold ellipse is a path commanded to a second-order tracking
system. The actual path followed by the tracking system is shown by the
smaller, solid ellipse. θ = 0 at x = 4, y = 0. Peaks in curvature of
the commanded ellipse occur at nπ. In this case, the bold ellipse was
commanded with the path length parameterization, that is, with constant
velocity along the path. Three different distances between the ellipses
are represented. The first two, point-to-point distance and nearest-point
distance, are defined for every point on the actual path. The ∞-norm and
the one-sided Hausdorff distance are the maximum of these two distances,
respectively. The third measure, alignment distance, is only defined at the
one point near each pointed end of the ellipses as shown by the bold dashed
line (see the Alignment Distance section for a full definition). If u(t) is
the position commanded at time t and α(t) is the output of the system
at the time commanded, then ‖u(t) − α(t)‖ is the point-to-point distance
at time t. Several instances of u(t) − α(t) are shown by light dashed
lines in the figure. For every point on the actual curve α, the distance to
the nearest point on the commanded curve is the nearest-point distance.
Several points on α are shown connected to their corresponding nearest
points on u with dotted lines. Note that the nearest-point distance does
not capture the alignment distance. There is no point on α which has
the far point on u as its nearest point. b) The three distances are shown
as a function of θ. They produce markedly differing patterns. The point-
to-point distance (light dashed line) is at a maximum on the less-curved
portion of the ellipse and at a minimum near the sharply-curved ends of the
ellipse. The nearest point distance (dotted line) displays exactly the opposite
pattern: it is at a maximum at the ellipse’s “points” and at a minimum
on the ellipse’s “straightaways”. Similarly, the alignment distance (bold
dashed line), which is a supremum, occurs at the ellipse points as well.
If reducing speed is a means of increasing path following performance and
decreasing distance between the commanded and actual path, then these
different distance measures suggest different speed profiles around the path,
that is, reparameterizations. The point-to-point distance suggests slowing
down on the straightaways and speeding up through the hairpin turns. The
nearest-point distance and the alignment distance suggest the opposite.

however, it is specifically designed to capture the worst case

deviation from the commanded path and thus gives the most

informative measure of tracking performance.
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