
Monotonically Improving Error Bounds for a Sequence of Approximations

for Makespan Minimization of Batch Manufacturing Systems

W. Weyerman, S. Warnick

Information and Decision Algorithms Laboratories

Department of Computer Science, Brigham Young University, Provo, UT 84602

http://idealabs.byu.edu

Abstract— We consider a batch manufacturing system model

with no intermediate storage and a single machine at each

workstation. These models have applications in fields such as

chemical processing, computer systems, and manufacturing.

We develop a max-plus representation for this system with

linear dynamics and show relevant properties of this system.

In particular, we express a sequence of increasingly complex

approximations to the minimum makespan problem in the max-

plus algebra. Using this formulation, we compute monotonically

improving error bounds for these approximations, guaranteeing

a decrease in error as more computational effort is used in the

approximation.

I. INTRODUCTION

Multipurpose batch manufacturing systems are used to

process a variety of job types using a fixed set of resources,

commonly referred to as machines. The batch property

allows several jobs of a given type to be processed simul-

taneously by a single machine. This complicates the well

known job-shop problem in that different machines may

process batches of different sizes. Thus, one machine may

have to finish processing 3 different batches before the next

machine in the job type’s route can begin processing one

batch. The job shop problem assumes the capacity, or batch

size, of each machine is equal; this is clearly a special

case. The batch manufacturing system model is useful for a

wide range of applications including manufacturing systems;

chemical processing plants; computing resources, including

mutual exclusion problems, processor resources, and parallel

architectures; and services.

Several papers have been published regarding various

aspects of the batch scheduling problem. As with the job

shop, some have approached the problem of scheduling

small systems of one or two machines [2], [4], [8], [10].

The problem of how to group jobs to form batches is

treated in [3], [5], [6]. A graphical solution to the general

multipurpose batch plant is given in [12] which works well

for simple examples. However, when there are machines of

drastically different sizes or complex recipes, the problem

This work has been supported by generous support from ATK Thiokol,
Sandia National Laboratories, and the Office of Research and Creative Ac-
tivities at BYU. Please direct questions and comments to W. Sam Weyerman
at wsweyerman@gmail.com or Sean Warnick at sean@cs.byu.edu.

grows to an intractable size. Others such as [9] and [11] use

a graphical representation of a multipurpose batch plant to

derive a mixed integer linear program (MILP) formulation

to determine the exact answer to solve several objectives.

Because these methods are exact, they are also computation-

ally intractable for a complex manufacturing system. Two

heuristic methods of solution to the minimum makespan

problem are given in [1], the better of the two reduces

decision variables in the MILP by a linear factor. A linear

reduction in decision variables in an MILP is not very helpful

because of the complexity of solving an MILP; the problem

still rapidly grows to an intractable size.

In this paper we analyze the heuristic given in [14] on

a batch manufacturing system with single machine work-

stations by developing a max-plus representation for these

systems. Using this representation we show that the error

incurred when using the heuristic is bounded and we compute

these bounds. We further show that as the complexity of

the approximation increases, the error bound decreases. We

conclude with an example.

II. MAX-PLUS ALGEBRA

We will briefly discuss the max-plus algebra as it is

presented in [7]. The max-plus algebra is defined over

Rmax = R∪−∞. We will define three operations for scalars:

∀a, b ∈ Rmax

a ⊕ b = max(a, b)
a ⊗ b = a + b
a ⊘ b = a − b.

The zero element is defined as ǫ = −∞, and the unit element

is defined as e = 0.

Matrix arithmetic is also defined. For matrices, A, B ∈
R

n×l
max, C ∈ R

l×m
max these are defined as:

[A ⊕ B]ij = aij ⊕ bij

[B ⊗ C]ik =
l

⊕

j=1

bij ⊗ cjk.

Proceedings of the
46th IEEE Conference on Decision and Control
New Orleans, LA, USA, Dec. 12-14, 2007

FrB04.5

1-4244-1498-9/07/$25.00 ©2007 IEEE. 5288

Authorized licensed use limited to: Brigham Young University. Downloaded on September 16, 2009 at 22:51 from IEEE Xplore. Restrictions apply.

The zero vector and the unit vector are given by

ǫ =







ǫ
...

ǫ







e =







e
...

e






.

The identity matrix is

I =











e ǫ . . . ǫ
ǫ e . . . ǫ
...

ǫ ǫ . . . e











.

We can now define a linear state-space system in the max-

plus algebra. For x(k) ∈ R
n
max, and A ∈ R

n×n
max, there is a

linear autonomous system,

x(k + 1) = A ⊗ x(k).

Definition 2.1: We say a max-plus autonomous system is

stable if

∀i∃v ∈ R lim
k→∞

xi(k) ⊘ x1(k) = v.

Throughout this paper we will use the convention that for

any y ∈ Rmax, the indeterminate form y ⊕ (ǫ ⊘ ǫ) = y.

We will also define the 1-norm in the max-plus algebra.

Definition 2.2: The 1-norm of a max-plus vector, b ∈
R

n
max is

||b||1 =
n

⊕

i=1

bi = e
T ⊗ b

This norm induces a norm on a matrix.

Definition 2.3: The 1-induced norm of an operator A ∈
R

n×m
max is

||A||1 = maxx(||A ⊗ x||1 ⊘ ||x||1).
Theorem 2.1: Given a matrix A ∈ R

n×m
max , the max-plus

1-induced norm of A is

||A||1 = max
ij

aij .

Proof supplied in [13].

Theorem 2.2: Given a matrix A ∈ R
n×m
max ,

min
x

||A ⊗ x||1 ⊘ ||x||1 = min
i

[eT ⊗ A]i.

Proof supplied in [13].

III. SYSTEM AND PROBLEM FORMULATION

We consider a batch manufacturing system model with

no intermediate storage. We have a factory F composed

of m workstations W . So F = {W1,W2, . . . ,Wm}. It

processes a suite of n job types given by the enumeration

J = {1, 2, . . . , n}. Job type j is characterized by a recipe

(c,τ)(j). Where ci(j) represents the capacity of workstation

i when processing job type j, and τi(j) represents the run

time of workstation i when processing job type j. Note that

this representation requires each job type to follow the same

route through the factory, namely the route that starts at

workstation 1, then proceeds to workstation 2, and so on

until workstation m.

In order to limit the decision making to the sequence of

job types entering the factory we make some assumptions

about the factory. We assume permutation schedules: each

machine follows the same sequence of job types. We also

assume that no workstation will begin operation of a batch

until the machine is completely filled. Therefore, each time a

job type is sequenced, the number of jobs that are sequenced

is equal to the least common multiple of the capacities of

each workstation for that job type, this is called a load and

is denoted L(j). This also requires that each workstation

process a set number of batches each time a job type is

scheduled, workstation i will process Bi(j) = L(j)/ci(j)
batches. We employ a no-idling policy: a workstation is

utilized as soon as it is available and there are jobs waiting

for it.

The step index of our system, k ∈ N, specifies where in

the sequence we are. Thus, each job type that is scheduled

represents a single step. We define the state of the system,

x(k) ∈ R
m, to represent the time that each machine is

available for processing after the kth step. The input to the

system, u(k) ∈ J , specifies the job type to be processed at

step k.

This system can be represented as some discrete time

dynamical system,

x(k + 1) = f(x, u, k); y(k) = g(x, u, k).

We define f(x, u, k) using a recursive method based on the

precedence structure imposed by our system.

βi,j(k) =























x1(k) i = j = 1,
E1,j−1(k) i = 1, j 6= 1,

max

(

β
i−1,

⌈

jci(uk)

ci−1(uk)

⌉(k)

+τi−1(uk), Ei,j−1(k)) otherwise
(1)

Ei,j(k) =























0 j < 0, or i > n,
xi(k) j = 0
max (βi,j(k) + τi(uk),

E
i+1,

⌈

jci(uk)

ci+1(uk)

⌉

−1
(k)

)

otherwise.

(2)

xi(k + 1) = Ei,Bi
(k). (3)

Here βi,j(k) refers to the time that workstation i begins

processing of batch j of the job type specified by uk, and

Ei,j(k) refers to the time that workstation i has completely

unloaded batch j. Note that relaxing the no-idling constraint

changes the equalities in these equations to greater than or

equal to.

We define g(x, u, k) in conventional algebra as

g(x, u, k) = ||x(k)||∞ − ||x(k − 1)||∞.

This is simply the amount that the max value of x is

increased by choosing uk to be the next element in the

sequence.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB04.5

5289

Authorized licensed use limited to: Brigham Young University. Downloaded on September 16, 2009 at 22:51 from IEEE Xplore. Restrictions apply.

Our objective is to minimize the makespan while reaching

a certain quota, q, to get a measure of capacity of the factory

with respect to a certain quota. The makespan of a sequence

U = (u1, u2, . . . , up) of length p is

p
∑

k=1

y(k).

We say that a sequence is admissible if for each i, i is in U
qi times.

Thus, the problem that we wish to solve is: given a factory

F , a set of job types J , with their associated recipes (c, τ),
and a quota q, find an admissible sequence U to

min

||q||1
∑

k=1

y(k)

subject to x(k) = f(x, u, k)
y(k) = ||x(k)||∞ − ||x(k − 1)||∞.

(4)

IV. A MAX-PLUS REPRESENTATION

Because this problem is NP-complete, we wish to analyze

this system in order to approximate this problem. However,

due to the recursive nonlinear definition of f(x, u, k) we seek

a different representation of this system. It turns out that this

system has linear dynamics in the max-plus algebra, so we

will derive a max-plus representation of the system.

To do this we will consider the system as a heap model. We

will represent the time that workstation i spends processing a

batch of job type j as a piece of width one and height τi(j).
The piece for job type j and workstation i is given by a

matrix Pi(j) which is equal to I except that [Pi(j)]ii = τi(j).
We represent the precedence of workstation i over i+1 using

a piece of width two and height 0. This matrix, Ri, is equal

to I except that [Ri]i,i+1 = [Ri]i+1,i = e.

Using these pieces we can construct the heap created by

job type j using the algorithm given in [13]. This algorithm

multiplies several piece matrices together to arrive at a matrix

which we refer to as A(j). We will show that this matrix

defines the linear max-plus model for (3). Thus, the system

can now be represented in the max-plus algebra as

x(k + 1) = A(uk) ⊗ x(k)
y(k) = ||x(k)||1 ⊘ ||x(k − 1)||1.

(5)

The 1-norm specified here is the max-plus 1-norm.

A. Properties

To ease notation we will introduce some new symbols.

Given A, we define

ξij = aij − ai,j+1,
δi = ai+1,1 − ai1.

We will give a definition of matrix structure.

Definition 4.1: We will say that a matrix A has the

monotone property if:

1) aij ≤ ai+1,j ,

2) aij ≥ ai,j+1,

3) ξ1i ≥ ξ2i ≥ . . . ≥ ξni ≥ 0, ∀i ≤ n,

4) aij > −∞, ∀i ≤ j ≤ n.

Lemma 4.1: A matrix B ∈ R
n×n
max with the monotone

property maintains Property 2 of the monotone property after

finitely many left multiplications of Pi and Ri for some job

type with n stages.

Proof supplied in [13].

Lemma 4.2: A matrix B ∈ R
n×n
max with the monotone

property maintains Property 3 of the monotone property after

finitely many left multiplications of Pi and Ri for some job

type with n stages.

Proof supplied in [13].

Theorem 4.1: Given (c, τ)(α), A(α) has the monotone

property.

This proof is provided in [13].

The fact that A has the monotone property gives two easy

results

Corollary 4.1: Given (c, τ)(α), we have the following:

||A(α)||1 = an1(α)
min

x
||A(α) ⊗ x||1 ⊘ ||x||1 = ann(α).

Proof: Let A be given. Due to monotonicity of A,

||A||1 = max
ij

aij

= an1.

And

min
x

||A ⊗ x||1 ⊘ ||x||1 = mini(e
T ⊗ A)

= mini([an1, . . . , ann])
= ann.

In [13] these systems are shown to be stable in the sense

of Definition 2.1.

V. APPROXIMATION METHOD AND BOUNDS

We will express the approximation method given in [14]

in the max-plus formulation. For the t-step approximation,

given a sequence U = (uk, . . . , uk+t) we approximate (5)

as

x̃t(k + 1) = A(uk+t) ⊗ . . . ⊗ A(uk) ⊗ x∗

ỹt(k) = ||x̃t(k)||1 ⊘ ||x̃t−1(k − 1)||1.

Where we define x∗ = e. This approximation eases the

solution to (4) as it exponentially reduces the number of

possible states and therefore number of values to compute at

each stage of the dynamic program that solves the problem.

This replaces a large NP-complete problem with a much

smaller NP-complete problem. Using this approximation,

much more complex problems can be solved in practice.

These ideas are made precise in [13].

The error of a single step of the t-step approximation is

given by

εt(k) = |y(k) ⊘ ỹt(k)|.

We can explicitly calculate the error bound for the 0-step

approximation for job type j.

Theorem 5.1: The maximum error of the 0-step approxi-

mation for job type j is

0 ≤ ε0(k) ≤ γ0(j) = an1(j) ⊘ ann(j)

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB04.5

5290

Authorized licensed use limited to: Brigham Young University. Downloaded on September 16, 2009 at 22:51 from IEEE Xplore. Restrictions apply.

Proof: Let A(j) be given. The maximum error of the

0-step approximation is given by

γ0(j) = max
x

{(||A⊗x∗||1 ⊘||x∗ ||1)⊘ (||A⊗x||1 ⊘||x||1)}

Using x∗ = e, we get

||A ⊗ x∗||1 ⊘ ||x∗||1 = an1.

Also by Corollary 4.1 we get

min
x

(||A ⊗ x||1 ⊘ ||x||1) = ann.

Thus,

γ0(j) = an1 ⊘ ann

Note that the 0-step approximation is not very useful as it

treats the dynamic system as a static function with a single

input. Therefore, every sequence has the same cost in the 0-

step approximation. We provide this value as a starting point

to analyze the error bound of the t-step approximation.

A. 1-step Approximation

We will now extend to the error bound of the 1-step

approximation and in the next section to the t-step approx-

imation. We will show that the error bound of the 1-step

approximation is less then or equal to the error bound of the

0-step approximation. We will first define some notation.

Definition 5.1: For a job type j, we define

Z
(1)
i (j) = [ai1 ⊘ ai−1,1 · · · ain ⊘ ai−1,n] ⊗ e

z
(1)
i (j) = ai1 ⊘ ai−1,1.

where it is understood that each aij is from A(j).
Lemma 5.1: For job type j, for any x ∈ R

n
max, we have

x(1) = A(j) ⊗ x, and

z
(1)
i (j) ≤ x(1)i ⊘ x(1)i−1 ≤ Z

(1)
i (j).

Proof: Let x ∈ R
n
max be given. Then x(1) = A ⊗ x.

Suppose that xi(1) = aij ⊗ xj and xi−1(1) = ai−1,l ⊗ xl.

Thus, aij ⊗ xj ≥ aip ⊗ xp for all p ≤ n, and ai−1,l ⊗ xl ≥
ai−1,p ⊗ xp, for all p. Through algebraic manipulation we

achieve

xj ⊘ xp ≥ aip ⊘ aij ∀p ≤ n,

xp ⊘ xl ≤ ai−1,l ⊘ ai−1,p ∀p ≤ n.

Using these inequalities, we prove the first inequality

xi(1) ⊘ xi−1(1) = (aij ⊗ xj) ⊘ (ai−1,l ⊗ xl)

≥ (aij ⊗ ail) ⊘ (ai−1,l ⊗ aij)

≥ ai1 ⊘ ai−1,1.

The second inequality follows similarly

xi(1) ⊘ xi−1(1) = (aij ⊗ xj) ⊘ (ai−1,l ⊗ xl)

≤ (aij ⊗ ai−1,l) ⊘ (ai−1,l ⊗ ai−1,j)

≤ [ai1 ⊘ ai−1,1 . . . ain ⊘ ai−1,n] ⊗ e

Now we will examine the error bound of the 1-step

approximation. This is given by

γ1(uk−1, uk) = max
x

{(||A(uk)A(uk−1)x
∗||1

⊘||A(uk−1)x
∗||1)

⊘(||A(uk)A(uk−1)x||1
⊘||A(uk−1)x||1)}

(6)

Note that γ1 ≥ 0 due to the fact the 0 is achievable by setting

x = x∗. Because x∗ = e, the numerator of this fraction is a

constant calculated from

||A(uk) ⊗ A(uk−1) ⊗ x∗||1 = [an1 . . . ann](uk)
⊗[a11 . . . an1]

T (uk−1)

and

||A(uk−1) ⊗ x∗||1 = an1(uk−1).

Which give us

[an1(uk) ⊗ a11(uk−1) ⊘ an1(uk−1), · · · , ann(uk)] ⊗ e.

Because we ultimately want to know the difference between

the 0-step approximation and the 1-step approximation, we

are interested in the quantity

(||A(uk) ⊗ x∗||1 ⊘ ||x∗||1)
⊘(||A(uk)A(uk−1)x

∗||1 ⊘ ||A(uk−1)x
∗||1).

Which by our previous calculations we can calculate and

define

δ1 =[an1(uk−1) ⊘ a11(uk−1),

(an1(uk) ⊗ an1(uk−1)) ⊘ (an2(uk) ⊗ a21(uk−1)),

· · · , an1(uk) ⊘ ann(uk)] ⊗ e

>e.

The action of maximizing (6) is done by minimizing the

denominator. So we wish to solve

min
x

(||A(uk)A(uk−1)x||1 ⊘ ||A(uk−1)x||1).

This problem is similar to the zero step approximation,

except that we have A(uk−1)x everywhere we used to have

just x. So now we have a similar problem, but with an extra

constraint.

As when calculating

min
x

(||A ⊗ x||1 ⊘ ||x||1)

we wanted xn = e with xi = ǫ for all other i, we want

[A(uk−1)⊗x]n = e and [A(uk−1)⊗x]i as small as possible.

By lemma 5.1, we know that once we fix [A(uk−1)⊗x]n = e

the smallest [A(uk−1)⊗x]i can be is e⊘
⊗n

j=i+1 Z
(1)
j (uk−1).

We will pick x so that

A(uk−1) ⊗ x = [e ⊘
n

⊗

j=2

Z
(1)
j (uk−1), · · · , e]T .

This value achieves

min
x

(||A(uk) ⊗ A(uk−1) ⊗ x)||1 ⊘ ||A(uk−1) ⊗ x||1)

=[an1(uk) ⊘ (
n

⊗

i=2

Z
(1)
i (uk−1)), · · · , ann(uk)] ⊗ e.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB04.5

5291

Authorized licensed use limited to: Brigham Young University. Downloaded on September 16, 2009 at 22:51 from IEEE Xplore. Restrictions apply.

Again, we are interested in the difference between this value

and that of the 0-step approximation, so we will define

δ2 =min
x

(||A(uk) ⊗ A(uk−1) ⊗ x||1 ⊘ ||A(uk−1) ⊗ x||1)

⊘ min
x

(||A(uk) ⊗ x||1 ⊘ ||x||1)

=[an1(uk) ⊘ ann(uk) ⊘ (
n

⊗

i=2

Z
(1)
i (uk−1)), . . . , e] ⊗ e

≥e.

This proves the following theorem.

Theorem 5.2: The bound of the error of the 1-step ap-

proximation for the two job type sequence (u1, u2) is

0 ≤ γ1(u1, u2) = γ0(u2) ⊘ δ1 ⊘ δ2.
Thus we see that the error bound of the 1-step approx-

imation is no worse than the error bound for the 0-step

approximation.

B. t-step Approximation

We will now extend this result to the t-step approximation.

We will show that the error bound for the t-step approxima-

tion is less than or equal to the error bound for the (t-1)-

step approximation. The t-step approximation error bound

for sequence U = (u1, . . . , ut) is given by

γt(U) = max
x

(||A(ut) ⊗ . . . ⊗ A(u1) ⊗ x∗||1

⊘||A(ut−1) ⊗ . . . ⊗ A(u1) ⊗ x∗||1)
⊘(||A(ut) ⊗ . . . ⊗ A(u1) ⊗ x||1
⊘||A(ut−1) ⊗ . . . ⊗ A(u1) ⊗ x||1).

(7)

Again it is easy to see that γt(U) ≥ 0 due to the fact that 0
is achievable by setting x = x∗.

We will define a recursive value similar to that in definition

5.1 which we will use to bound x(k):
Definition 5.2: Given a sequence of length t of job types,

U = (u1, u2, . . . , ut),

Z
(t)
l (U) =

⊕

d1 ∈ DZ(l − 1)
d2 ∈ DZ(l)

d1 ≤ d2

(ald2
(ut) ⊘ al−1,d1

(ut)

⊗

d2
⊗

j=d1+1

Z
(t−1)
j (U t−1)





z
(t)
l (U) = min

d1 ∈ Dz(l − 1)
d2 ∈ Dz(l)

d1 ≤ d2

(ald2(ut) ⊘ al−1,d1(ut)

⊗

d2
⊗

j=d1+1

z
(t−1)
j (U t−1)



 ,

with

DZ(i) = {d | ∀k < d


aik ⊘ aid ≤
d

⊗

j=k+1

Zt−1
j (U t−1)











Dz(i) = {d | ∀k > d


aid ⊘ aik ≥
k

⊗

j=d+1

zt−1
j (U t−1)











.

Here we use the notation U t−1 to mean (u1, . . . , ut−1).

Moreover, we still have Z
(1)
l (u1) and z

(1)
l (u1) as in Def-

inition 5.1.

Note that due to the monotonicity of A, Zi is achieved with

the maximum d1 ∈ DZ(i − 1) and d2 ∈ DZ(i), and zi is

achieved with the minimum d1 ∈ Dz(i−1) and d2 ∈ Dz(i).
We will develop a lemma similar to Lemma 5.1

Lemma 5.2: Given a sequence of length t, U =
(u1, . . . , ut), for any x ∈ R

n
max, we have x(t + 1) =

A(ut) ⊗ . . . ⊗ A(u1) ⊗ x with

z
(t)
i (u) ≤ xi(t + 1) ⊘ xi−1(t + 1) ≤ Z

(t)
i (u).

The proof for this lemma is similar to the proof for Lemma

5.1, although slightly more complex, and is given in [13].

Using these bounds, we can prove the following result.

Lemma 5.3: Given a sequence U = (u1, . . . , ut),

A(ut) ⊗ . . . ⊗ A(u1) ⊗ e =

















xn ⊘

(

n
⊗

i=2

z
(t)
i (U)

)

...

xn ⊘ z
(t)
n (U)

xn

















The proof is supplied in [13].

We now state and prove the main theorem.

Theorem 5.3: Given a sequence of job types, U =
(u1, . . . , ut),

0 ≤ γt(U) ≤ γt−1(u2, . . . , ut).
Proof: The equation for γt(U) is given in (7). To

calculate γt(U)⊘ γt−1(u2, . . . , ut), which we will hereafter

refer to simply as γt and γt−1, we will consider two parts.

First we will consider

φ1 = (||A(ut) ⊗ . . . ⊗ A(u1) ⊗ x∗||1
⊘||A(ut−1) ⊗ . . . ⊗ A(u1) ⊗ x∗||1)
⊘ (||A(ut) ⊗ . . . ⊗ A(u2) ⊗ x∗||1
⊘||A(ut−1) ⊗ . . . ⊗ A(u2) ⊗ x∗||1) .

Using Lemma 5.3 we write this as


a11(ut) ⊘





n
⊗

j=2

z
(t−1)
j (ut−1)





· · · an−1,1(ut) ⊘ z
(t−1)
n (ut−1), ann(ut)

]

⊗ e

⊘



a11(ut) ⊘





n
⊗

j=2

z
(t−2)
j (u2, . . . , ut−1)





· · · an−1,1(ut) ⊘ z
(t−2)
n (u2, . . . , ut−1), ann(ut)

]

⊗ e.

≤ e.

Where the last line is a result of the fact that z
(t−1)
i (U t−1) is

more constrained than z
(t−2)
i (u2, . . . , ut−1), which implies

z
(t−1)
i (U t−1) ≥ z

(t−2)
i (u2, . . . , ut−1).

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB04.5

5292

Authorized licensed use limited to: Brigham Young University. Downloaded on September 16, 2009 at 22:51 from IEEE Xplore. Restrictions apply.

0 100 200 300 400 500 600 700 800 900 1000

1

2

3

4

5

time

re
s
o

u
rc

e
s

Previous State

Occupied, loading batch

Occupied, emptying batch

Operating

Fig. 1. A Gantt chart representing resource utilization by product 1.

The other part that we wish to consider is

φ2 = min
x

(||A(ut) ⊗ . . . ⊗ A(u1) ⊗ x||1

⊘||A(ut−1) ⊗ . . . ⊗ A(u1) ⊗ x||1)
⊘min

x
(||A(ut) ⊗ . . . ⊗ A(u2) ⊗ x||1

⊘||A(ut−1) ⊗ . . . ⊗ A(u2) ⊗ x||1)
≥ e.

Where we get the final line because the first minimization is

more constrained, and therefore greater than or equal to the

latter minimization.

Using these two results: γt ⊘ γt−1 = φ1 ⊘ φ2 ≤ 0.

We have now shown that as t increases the error bound

of the approximation decreases.

VI. EXAMPLE

Consider a manufacturing system with 5 workstations that

processes 5 job types. Consider the recipes

C =













1 1 8 2 1
7 12 8 4 70
7 6 8 4 10
7 1 4 1 2
1 4 4 4 7













T =













64 45 81 14 14
72 36 48 32 25
70 16 21 14 93
9 68 58 23 40
46 70 67 40 52













.

A Gantt chart representing job type 1 is depicted in Figure

1. Note that the heap represented by job type 1 is the same

form as the Gantt chart.

If we consider a quota of q = [2 2 2 2 2]T , we can

calculate the sequence that gives the minimum makespan.

There is more than one, but one sequence is given as

4, 4, 1, 3, 2, 2, 5, 1, 3, 5.

The makespan of this sequence is 8772. The maximum

makespan is 9987, the mean is 9386 and the median is 9396.

By approximating the system, we obtained solutions for

the 1-step and 2-step approximations. We also calculated the

error bound for the 1-step approximation. The results are

Approximation Optimal Predicted Actual Error
Sequence Makespan Makespan Bound

1-step 4,3,3,2,2, 8889 8836 1270
5,1,1,5,4

2-step 4,4,1,3,2, 8772 8772 784
2,5,1,3,5

TABLE I

THE OPTIMAL SEQUENCES AND MAKESPANS FOR THE 1-STEP AND

2-STEP APPROXIMATIONS.

shown in Table I. We see that the bound on the error for the

1-step approximation is greater than the actual error.

VII. CONCLUSION

We have developed a linear max-plus dynamic system

representation of a batch manufacturing system model. For

the max-plus representation, we showed special properties of

the system. We then showed that using the approximation in

[14] to solve the sequencing problem leads to a solution with

bounded error from the true solution. We explicitly calculated

this bound for the 0-step and 1-step approximations and

showed that the error bound decreases as the complexity of

the approximation increases.

REFERENCES

[1] F. Blömer and H. Günther. Scheduling of a mutli-product batch process
in the chemical industry. Computers in Industry, 36:245–259, 1998.

[2] T. Cheng, C. Ng, J. Yuan, and Z. Liu. Single machine parallel
batch scheduling subject to precedence constraints. Naval Research

Logistics, 51:949–958, 2004.
[3] X. Deng, H. Feng, G. Li, and G. Lui. A PTAS for minimizing total

completion time of bounded batch scheduling. Internation Journal of

Foundations of Computer Science, 13(6):817–827, 2002.
[4] G. Dobson and R. S. Nambimadom. The batch loading and scheduling

problem. Operations Research, 49(1):52–65, January–February 2001.
[5] L. Dupont and C. Dhaenens-Flipo. Minimizing the makespan on

a batch machine with non-identical job sizes: an exact procedure.
Computers and Operations Research, 29(7):807–819, 2002.

[6] C. Glass, C. Potts, and V. Strusevich. Scheduling batches with
sequential job processing for two-machine flow and open shops.
INFORMS Journal on Computing, 13(2):120–137, Spring 2001.

[7] B. Heidergott, G. J. Olsder, and J. van der Woude. Max Plus at

Work: Modeling and Analysis of Synchronized Systems: A Course on

Max-Plus Algebra and its Applications. Princeton Series in Applied
Mathematics. Princeton University Press, 2006.

[8] D. Hochbaum and D. Landy. Scheduling semiconductor burn-in opera-
tions to minimize total flowtime. Operations Research, 45(6):874–885,
Nov/Dec 1997.

[9] E. Kondili, C. C. Pantelides, and R. W. H. Sargent. A general algorithm
for short-term scheduling of batch operations - I. MILP formulation.
Computers and Chemical Engineering, 17(2):211–227, 1993.

[10] B. Lin and T. Cheng. Batch scheduling in the no-wait two-machine
flowshop to minimize the makespan. Computers and Operations

Research, 28:613–624, 2001.
[11] S. H. Rich and G. J. Prokopakis. Scheduling and sequencing of batch

operations in a multipurpose plant. Ind. Eng. Chem. Process Des.

Dev., 25:979–988, 1986.
[12] E. Sanmartı́, L. Puigjaner, T. Holczinger, and F. Friedler. Combinato-

rial framework for effective scheduling of multipurpose batch plants.
AIChE Journal, 48(11):2557–2570, Nov 2002.

[13] W. Weyerman and S. Warnick. An approximation method with
bounded error for sequencing of batch manufacturing systems. in

preparation.

[14] W. Weyerman, D. West, and S. Warnick. A decision-friendly approx-
imation technique for scheduling multipurpose batch manufacturing
systems. Proc. IEEE American Control Conference, 2006.

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrB04.5

5293

Authorized licensed use limited to: Brigham Young University. Downloaded on September 16, 2009 at 22:51 from IEEE Xplore. Restrictions apply.

