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Abstract— This research explores the role and representa-
tion of network structure for LTI systems with partial state
observations. We demonstrate that input-output representa-
tions, i.e. transfer functions, contain no internal structural
information of the system. We further show that neither the
additional knowledge of system order nor minimality of the
true realization is generally sufficient to characterize network
structure. We then introduce dynamical structure functions as
an alternative, graphical-model based representation of LTI
systems that contain both dynamical and structural information
of the system. The main result uses dynamical structure to
precisely characterize the additional information required to
obtain network structure from the transfer function of the
system.

I. INTRODUCTION

One of the fundamental issues for modeling, identifying,
and controlling complex networked systems is inferring
system structure, or reverse engineering, from input-output
data. Structure is often the key for understanding a variety
of complex systems because it enables a decomposition of
the complete system into an interconnection of subsystems.
When analysis of the subsystems is comparatively simple,
and the interconnection structure is well understood, then
the behavior of the complex system can be deduced from an
understanding of its components. Moreover, exploiting struc-
tural information can tremendously reduce the conservatism
of robust solutions designed to compensate for system un-
certainty. This impact on complexity and uncertainty makes
structural information extremely important in the analysis of
complex networked systems.

Examples of scientists working on identifying or ex-
ploiting network structure arise in a variety of disciplines.
Social scientists have developed a rich literature on the use
of network models to describe interpersonal associations,
perhaps one of the most famous works being Milgram’s
”small world” experiment in the 1960’s in which letters
passed from person to person were able to reach a particular
target individual in only about six steps [16]. More recently,
attention has focused on networks of business communi-
ties [S5], [14], [17], internet-enabled virtual communities
[11], citation networks in scientific communities [19], [21],
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preference networks for product recommender systems [7],
[20], distribution networks [1], and the detection and desta-
bilization of terrorist networks [3]. Epidemiologists have
developed models for the dynamics of both epidemic and en-
demic diseases spreading through population networks [10],
computer scientists have developed algorithms for searching
over networks that are deployed in a number of popular
applications [2], and biologists use microarray and other
data sources to infer the regulation structure in genomic,
proteomic, and metabolic networks [9], [15], [22], [23] .

Discovering structure from data, however, can be difficult.
Typical identification methods do not emphasize structure
estimation, but rather focus on behavior generalization by
selecting a model that accurately predicts system outputs
for unobserved inputs. As long as the dynamic behavior of
the system is accurately described, the question of structure
is often avoided altogether. For many applications, various
model structures for the same input-output map are equally
useful for forecasting and control. Nevertheless, sometimes
it is important not only to describe the system dynamics
accurately, but to do so with a model that correctly represents
the structure of the original system.

In contrast with these identification methods that em-
phasis system dynamics over structure, inference methods
have been developed that emphasis structure over dynamics.
These methods employ graphical models to describe network
structure. Nodes represent system states, understood to be
random variables, and edges indicate conditional dependence
between variables. Using Bayes rule, measurements can then
be used to update prior distributions believed to characterize
relationships throughout the network. A rich literature has
grown in this area, and even issues of inferring causality
from correlation have been addressed at some level [12],
[13], [18].

Nevertheless, although these Bayesian Networks provide
an efficient way to parameterize the joint probability distribu-
tion characterizing the entire system, conditional probabili-
ties do not capture system dynamics, and the most successful
inference techniques only work on directed acyclic graphs
[4]. For some applications, such as modeling the citation
network for a particular body of research, assuming the
network is acyclic is reasonable since papers generally only
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cite previously published work. There are many applications,
however, such as modeling biological or social or economic
networks, where such an assumption insisting on the absence
of feedback dependencies between system states would be
entirely unreasonable. Moreover, often an accurate represen-
tation of system dynamics is as important as that of system
structure. In these situations, new methods are needed.

This paper introduces dynamical structure functions as a
representation of LTI systems that captures both the dynam-
ics and graphical structure of a system or network. The next
section motivates these representations by demonstrating that
transfer functions contain no internal structural information
of a system, and they are generally not sufficient to obtain
structure even when system order or minimality of the true
system realization is known. We then introduce the dynam-
ical structure function of an LTI system in Section III and
discuss its properties. Section IV then uses this representation
to precisely characterize the additional information required
to obtain dynamical structure from the transfer function of
the system. A discussion illustrating various corollaries and
implications of the result concludes the paper.

II. MOTIVATION

We begin our discussion by introducing the concept of
the network structure of a dynamical system and illustrating
that input-output representations of LTI systems, i.e. transfer
functions, contain no internal structural information of the
system. We go on to show that even when system order is
known, or when the system is assumed to be minimal, the
transfer function is still not generally sufficient information
to obtain the network structure of the system. Although these
concepts will be made precise in later sections of the paper,
we illustrate the ideas here with some motivating examples.

A. Network structure of a dynamical system

The network structure of a dynamical system is a descrip-
tion of the causal dependencies between system variables.
These dependencies are typically represented by a directed
graph where variables of the system are nodes, and an
arrow between nodes indicates a causal relationship between
variables.

In an input-output setting, the structure of a dynamical
system is a graph from inputs to outputs (the “control
structure”) superimposed on a graph relating output variables
to each other (the “internal structure of the measured states”).
Although these concepts will be made precise in the next
section, let us illustrate these ideas with a simple example.
Consider the following system:

X1 -1 0 -1 X1 2 0
o= 1 2 o] x|+|1 3 {”1]
% 0 3 -1 X3 0 1 12
Y1 1 0 0 X1
v =101 0 X2 |.
y3 0 0 1 X3

This system has the “ring” structure shown in Figure 1.
Observe that the state-space description completely charac-
terizes the network structure.
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Fig. 1. System structure is composed of the internal structure (solid) and
the control structure (dashed).

B. Transfer functions do not imply internal structure

Since transfer functions are input-output representations
of a system, it is not surprising that they do not fully
characterize the internal structure of a system. One might
think, however, that some structural information could be
derived from the transfer function of a system. Nevertheless,
as will be proven later, it turns out that every transfer function
G has a state-space realization that is consistent with any
possible internal structure. Moreover, this is true even while
preserving the same output equations of the system.

We illustrate this fact with a simple example. Consider a
system with the following transfer function:

L
G(s) = syl . (1)
(s+1)(s+2)
It can be shown that this transfer function is consistent with
two systems with very different internal structures, given by

-1 0 0 1
=] 0 2 1| B=|0 ,Clz[é 1 8}
0 0 -1 1

and

-1 1 1
S s LI k|

The networks in Figure 2 correspond to each of the indicated
realizations of G. It is easy to show that the remaining pair of
distinct internal structures (y; < y; and y; = y,) can likewise
be obtained from suitable realizations of G.

u <
@ @
Fig. 2. Two possible networks given the transfer function: decoupled

internal structure (left) and coupled internal structure (right).

C. Neither order nor minimality determine structure

Although network structure can not be recovered from a
transfer function without additional information or assump-
tions, it seems plausible that specification of the system
order may lead to network reconstruction. Certainly there
is a well-developed body of literature exploring techniques
for estimating the order of a system from input-output data,
suggesting that one may obtain a reasonable estimate of the
order of the system when identifying the system.

Nevertheless, order in and of itself is not enough infor-
mation to reconstruct the system network from its transfer
function. On the other hand, if, in addition, one also knows
a bijective relationship between the measured outputs and
the system states, then the network structure is determined
precisely by the transfer function. Such special conditions
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enabling measurement of the entire state vector, however,
appear to be unreasonable in most situations.

Another plausible assertion is that knowledge of the min-
imality of the system is sufficient to recover system struc-
ture from its transfer function. Certainly in the absence of
concrete information to the contrary, Occam’s Razor would
lead us to presume that the actual realization of the system
would be minimal. Nevertheless, as the following example
illustrates, even minimal realizations of simple systems with
known output equations can have wildly different network
structures. Consider a system with the following transfer

function:
==
G= §
s+3 [ ‘% ]

It can be shown that this transfer function is consistent with
two systems with very different internal structures, given by

-1 0 1 0
Ai=| 0 =2 1], Bj=]o0 [,

0 0 -3 1

-2 -1 1 0

0 -1 -1 1

and
o [1 00
ClCZ{o 1 o}
The networks in Figure 3 correspond to each of the indicated
realizations of G. Note that both realizations are minimal.

@

Fig. 3. Two possible networks corresponding to minimal realisations of
the transfer function: decoupled (left) and coupled (right) internal structure.

D. Problem statement

The fact that network structure can not be specified from a
given transfer function, even when the order of the system is
specified or an assumption of minimality is made, motivates
the question as to exactly what information is needed to
reconstruct an LTI network from its transfer function. The
remainder of the paper addresses this issue.

III. DYNAMICAL STRUCTURE

To formulate the network reconstruction problem, we
consider the system given by

y _ Ay App y B
HEIBIO

y (1 o][xyh

where x = [y’ x}l]/ € R, is the full state vector, y € R” is

a partial measurement of the state, x;, are the n— p “hidden”
states, and u € R™ is the control input. In this work we
restrict our attention to situations where output measurements
constitute partial state information. [8] Note that in many
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applications the most sensible description of the system is in
terms of the measured outputs as states, although rarely can
we measure all the states of the system.

We have seen that the state-space realization of a system
completely determines structure. Nevertheless, this refined
description of the structure is too detailed—it will be as
hard to recover from the transfer function as the state-
space description itself. We would like a notion of network
structure at the resolution of our measurements, something
that suppresses information about the hidden states but ac-
curately captures the interaction structure between measured
states (internal structure) and the inputs and measured states
(control structure). In the sequel we derive expressions for
these structural representations.

Taking Laplace Transforms of the signals in (2), we find

sY Al Ap Y B

] - ]l R e o
Solving for X;, gives X, = (s]—A22)71A21Y +
(SI—Azz)ileU . Substituting into the first equation
of (3) then yields sY = WY + VU, where W =
A1t +Ap (sT—A») "Asy and V = Arp (sT —Ax) ' B+ By.
Let D be a matrix with the diagonal term of W, ie. D =
diag(Wi1,Waa,...,W,). Then, (sl —D)Y = (W —D)Y +VU.

Note that W — D is a matrix with zeros on its diagonal. We
then have

Y = QY +PU (4)
where
Q=(sI-D)"'(W-D) 5)
and
P=(si-D)"'v (6)

The matrix Q is a matrix of transfer functions from Y; to Y;,
i # j, or relating each measured signal to all other measured
signals (note that Q is zero on the diagonal). Likewise, P is
a matrix of transfer functions from each input to each output
without depending on any additional measured state Y;.

These matrices, Q and P, are precisely the structural
representations we were seeking. Compare and contrast the
entries in Q or P with those in G. While the elements of these
matrices are all rational polynomials and have interpretations
as transfer functions, they are, in fact quite different. For
example, G;; is indeed the transfer function describing how
the j™ input impacts the i"" output, nevertheless this effect
may couple together influences of many of the states of
the system, including other measured states. On the other
hand, P;; denotes the direct impact of the j™ on the i
output, where direct is understood to mean exclusive of the
other measured states. This element of P is, of course, a
rational function in s and subsequently has dynamics, but
these dynamics represent the action of some hidden states
or that of the i measured state, never the interaction with
another measured state. From this we consider the following
definitions:

Definition 1: Given the system (2), we define the Dynam-
ical Structure Function of the system to be (Q,P), where
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Q and P are the Internal Structure and Control Structure,
respectively, and given as in (5) and (6).

Definition 2: Consider the system (2) with associated
dynamical structure function, (Q,P), and transfer function,
G. We say the system’s dynamical structure can be recon-
structed if (Q,P) can be derived from G.

This definition of dynamical structure and its reconstruc-
tion enable a precise exploration of its properties. The
following lemmata demonstrate that (Q, P) does, in fact, have
the interpretation of structure in a sense that is generally
less detailed than the complete state-space realization of the
system, but more detailed than the transfer function of the
system.

Lemma 1: The dynamical structure function of any sys-
tem (2) exists and is unique.

This fact is true by construction of Q and P and ensures
that the dynamical structure function of a system is well
defined.

Lemma 2: Consider the system (2). If p = n then the
dynamical structure can be reconstructed.

This follows the fact that if p = n in (2), then the associated
transfer function G has a unique realization and thus, a
unique dynamical structure.

Lemma 3: Consider the system (2) with p < n. The dy-
namical structure function (Q,P) is invariant to changes of
coordinates on the hidden states, z;, = Tx;, with T invertible.

Proof: The change of coordinates yields a new system

given by
y _ A ApT! Yol B "
Zn TA>; TAzzT_l Zn TB>
y
= I 0 .
yoo=lro] )]

Construction of the dynamical structure function for this
system reveals it to be precisely that of the untransformed
system (2). ]

From this lemma we see that when hidden states are
present, the dynamical structure representation of a system
contains strictly less information than its state-space de-
scription. In particular, the dynamical structure function is
invariant to any change of coordinates (and corresponding
change of structure) only involving the hidden states, show-
ing that this information is suppressed in this description of
the system.

Lemma 4: The transfer function, G, of the system (2), is
related to its dynamical structure, (Q,P), by

G=(1-0)"'P (7)
This fact follows directly from (4) and ¥ = GU. The
lemma demonstrates that dynamical structure can be inter-
preted as a factorization of the system transfer function,
and that dynamical structure has more information about the
system than G alone. The main result in the next section
precisely characterizes the additional information contained
in the dynamical structure representation of a system beyond
that of its associated transfer function, thereby providing
conditions when dynamical structure can be reconstructed.
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Lemma 5: Rank(P) = rank(G).

This follows immediately from the fact I — Q is invertible.

Lemma 6: Every entry of the dynamical structure func-
tion, Q;; or Py, is a strictly proper function.

Strict properness follows from the fact that (sI —D)~!
(which is strictly proper) is multiplying transfer functions
in W or V that are at most proper (never improper). This
fact is important for the interpretation of Q and P as
network structures. The strict properness of non-zero entries
of these matrix functions imply causal relations, consistent
with a directed edge interpretation between nodes on a graph.
Moreover, zeros of the matrix functions indicate the absence
of a direct causal relationship between nodes, even when
considering hidden states of the system; only indirect paths
through other measured states y are possible. In this way, Q
and P can be seen to capture precisely the structure of the
system at the resolution of the given measurements without
imposing any kind of structure on the hidden part of the
system.

An equivalent representation of equation (7) is

(I-Q)G=P @®)

which can also be written as as &/X = g, where & is a
functions of the elements of G only, X = (¢, j) is a vector
stacked with the rows of Q (excluding the diagonal of Q) and
P, respectively, and g is a vector of the elements of G stacked
similarly. The operator </ has pm rows and pm+ p> —p
columns.

Lemma 7: The dimension of the range of </ is pm.

The result follows from the fact that <7 can be written as
of = [F(G) 1], where F(G) is a linear matrix function of
G, and therefore .7 has full row rank. This lemma says that
every G is in the range of the operator o7, guaranteeing that
there will always be at least one (Q,P) pair consistent with
G. Note that this result agrees with Lemma 4.

Lemma 8: The operator <7 has a null space of dimension
p? — p. Moreover, (Q,P) is an element of the null space of
&/ if and only if P = —QG.

Since the operator </ has pm rows and pm+ p> —p
columns and is rank pm, it has a null space of dimension
p> — p. The second result is an immediate consequence of
G = P+ QG. This null space completely characterizes all
dynamical structures (Q, P) which are consistent with a given
transfer function G.

Equipped with this representation of an LTI system and
a precise notion of network reconstruction, we are now
prepared to fully characterize the conditions when a system’s
dynamical structure can be reconstructed. We focus our
attention on this task in the next section.

IV. DYNAMICAL STRUCTURE RECONSTRUCTION

Dynamical structure reconstruction deals with finding the
“true” dynamical structure of a system given its transfer
function. We begin with a complete state-space system as
in (2). Presumably this system is unknown, but it generated
enough data for us to estimate its transfer function G.
Ultimately we would like to know the dynamical structure
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function of this system, so the question becomes exactly
what information do we need above and beyond the transfer
function to uniquely specify it.

Lemma 8 makes the problem of uniquely specifying
dynamic structure given a transfer function clear. Essentially,
one simply needs to specify which element of the null space
characterizes the correct structure.

Theorem 1: Consider a system (2) and assume the only
available information is its associated transfer function G.
The dynamical structure can be reconstructed if and only if
the component of (Q,P) in the null-space of 2 is known.

Proof: The “if” part follows from the fact that § com-
pletely specifies the element of (Q, P) in the row space of </
(see Figure 4). Thus, knowledge of the null space component
of (Q,P) uniquely species the dynamical structure of (2).

For the “only if”part, let X; satisfy «/X; = g and Xy # 0
be an element of the null space of /. Then, there exists a
large enough nonnegative integer k such that

(s+ 1)k

which is also a solution of &7X, = g and all the elements in
X, are strictly causal. We have then found another dynamical
structure, i.e., another set of strictly proper Q; # Q, and
P, # P, consistent with G. Thus, the dynamical structure
cannot be reconstructed uniquely, which is a contradiction.
|

H=X1+3xn

AG

RAT RA

NA

Fig. 4. The component of dynamical structure in the row space of <7, Xg,
is completely specified by the transfer function g. Thus, Xy represents the
additional information in dynamical structure.

The implications of the theorem are that we must know
p? — p transfer functions in order to reconstruct dynamical
structure from G. Which p? — p transfer functions need to be
known, however, depends on the basis of the null space of
/. The following corollary, illustrates an important special
case of this result when a transfer function will not have an
entire row or column of zeros. This situation is typical for
many systems.

Corollary 1: Consider a system (2) and assume the only
available information is its associated transfer function G,
which does not have any rows or columns that are entirely
zero. The dynamical structure can be reconstructed if and
only if at least p? — p transfer functions of Q or P are known.

Proof: From Lemma 8, the knowledge of p? — p ele-
ments between Q and P completely specifies the component
of (Q,P) in the null space from the equation P = —QG. The
proof then follows from Theorem 1. ]

These results provide necessary and sufficient conditions
for the dynamical structure reconstruction of LTI networks.
Next we consider some important special cases of this
theorem.
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V. DISCUSSION

Having identified precisely what must be known to specify
dynamical structure from a transfer function (which, in turn,
is assumed to have been identified from data), we now turn
our attention to some important special cases or implications
of these results.

A. Every transfer function admits any internal structure

This fact was illustrated by example in Section II-B. Now
the result follows trivially from previous results.

Corollary 2: Given G and Q there is a P such that (Q,P)
is consistent with G.

This follows from (8) and it shows that without additional
information besides G, any internal structure is possible. In
particular, any transfer function has a realization with an
internal structure that is completely decoupled (i.e. Q = 0)
or fully connected.

B. Transfer functions with zero rows or columns

Zero column vectors in G can be removed without loss of
generality since the corresponding inputs have no impact on
the system. To see this, after rearranging the terms in G this
can be decomposed into G= [G; 0] where G; has no zero
column vectors. Decompose P in a similar way P= [P P,].
From (8) we have (I — Q) [G1 O] = [Pl Pz] from which
we conclude that (I — Q)G = P, and P, = 0. This basically
says that the inputs corresponding to the zero vector entries
in G are vacuous and can be removed from the system. For
reminder of the paper, we assume G has no zero column
vectors.

Assume now G has zero row vectors. After rearranging the
terms in G this can be decomposed into G = [G;;0] where
G has no zero row vectors. Decompose also Q and P as
0 =1[011 Q12:021 O»n] and P = [P;; P,]. From (8) we get two
equations: (I — Q11)G11 = P; and —Q;G1; = P, with Q1»
and Qy; are undetermined. Therefore network reconstruction
demands a priori knowledge of Q12 and Q»;.

C. Unknown internal network structure

This sections assumes there is no information on the
internal structure (i.e. no information on Q). Thus, we assume
that in addition to G having no column vectors, G must
also have no row vectors or otherwise the internal structure
cannot be reconstructed (in particular, Q1> and Oy, can note
be recovered as from the discussion in Section V-B). We
consider the following four cases: m < p — 1 (there are 2 or
less inputs than measured states), m = p — 1 (1 less input
than measured states), m = p (same number of inputs and
measured states) and m > p (more inputs than measured
states).

1) m < p—1: two or less inputs than measured states:
If m < p—1 and there is no information on the internal
structure, then the dynamical structure cannot be recovered.
In this case, the total number of known transfer functions
(all from P) is upper bounded by mp < p*> — p, which does
not satisfy the condition of Corollary 1 that is necessary for
reconstruction.
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2) m= p—1: one less input than measured states: If m =
p—1 and there is no information on the internal structure,
then the dynamical structure can be recovered if and only if
P is precisely known. To see this, the total number of known
transfer functions (all from P) is mp = p> — p which satisfies
the condition of Corollary 1.

For example, consider the system from Section II-B
with p =2 measured states, m = 1 control input and G =
(G11,G21) given by (1). With no knowledge of P, several
different networks satisfy (8), which has two equations and
four unknowns:

{ G11 — 01262 P

G — 021G = Py

giving 2 degrees of freedom between the internal structure
(Q12 and Q71) and the control structure (P;; and P»;). For
example, a possible solution is to set Q2 = Qo1 =0, i.e.
decoupled network between y; and y;. In that case, Pj; = G
and Py = Gy (left of Figure 2). Note the hidden state in
Py (Py; is second-order) and the system is not controllable
(due to the common pole at —1), which explains why G
is second-order and there are three states. An alternative is
Py; =0 (which fixes Q21 = G21/G11) and Q1 = 0 (which
fixes P11 = G11), which can be seen on the right of Figure 2.
Note that in this case P;; # 0 or otherwise Q1 would be
non-proper.

3) m = p: same number of inputs and measured states:
With no knowledge of Q, to satisfy the condition of Corol-
lary 1, we must know p> — p transfer functions in P.
Knowing any nonzero transfer function in P requires much
more information than knowing that an entry in P equals
zero, since specifying a nonzero transfer function demands
characterising all the poles, zeros, and gain of that particular
transfer function. As a result, requiring knowledge of non-
zero transfer functions to satisfy the conditions of Corollary 1
may be an unreasonable assumption. However, knowing
some structure in P, such as the location of some of its zeros
may be more reasonable.

Consider the case where P is all zero except for p nonzero
transfer functions. Here we restrict our attention to the
case where G is invertible, as this results in a very useful
closed-form solution for (Q,P). The next result assumes no
knowledge of Q or any of the p nonzero transfer functions
in P.

Corollary 3: If m = p, G is full rank, and there is no
information on the internal structure and on nonzero transfer
functions in P, then the dynamical structure can be recon-
structed if and only if each input controls a measured state
independently, i.e. P;j = 0 for i # j. Moreover, H = G!
characterizes the dynamical structure as follows

Qij:*% and Pii:i”

Proof: The “if” part of the proof follows from the fact
that there are p? — p known transfer functions (equal to zero)
in P and using Corollary 1. Multiplying (I — Q)G = P on the
right by H = G~! yields I — Q = PH. Since Q has zeros
on its diagonal and P is diagonal, we have 1 = P;H;; or
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P; = 1/H;;. Finally we can now solve for Q =1 — PH and
the result follows.

For the “only if” part, using Corollary 1 again shows
that p> — p entries in P must be known. Because there
is no knowledge of nonzero transfer functions in P, then
p? — p entries in P must be zero. By Lemma 5, rank(P) =
rank(G) = p. Thus, there must be exactly p unknown and
nonzero entries in P. Since P is full rank, each row and
column must have exactly one of these entries. Without loss
of generality the inputs can be renamed and reordered so that
the diagonal of P contains the unknown and nonzero entries.
|

This result says that in addition to having a square and full
rank G it is necessary and sufficient to know that each control
i affects first state i before it affects any other measurable
state to reconstruct the dynamical structure. That allows us
to reduce the number of unknowns to p> — p+ p = p*> which
can now be solved.

However, if there is some a priori information about the
internal structure (such as some of the Q;; = 0) then there is
more flexibility and less information and constraints are re-
quired for F;;. As long as there are only p? nonzero elements
between Q;; and P;; then the dynamical structure can be
reconstructed by solving the linear system of equations (8).

If P is not diagonal and there is additional information
on how the inputs affect the measured states, there may
be a change of basis in the control vector that allows it to
be converted to a diagonal matrix that can then be used in
Theorem 1. For example, if x; is controlled by u; 4+ u> and
X2 by u; —uy then one could define two new input vectors
vi=u1+uy and vy = uy; — up.

4) m > p: more inputs than measured states: From The-
orem 1, we need to know p?> — p from the pm > p* elements
in P. It may seem intuitive that if there are more inputs then
there should be more information. However, the extra inputs
are in a way redundant. The reason is the fact that although
G is p x m, rank(G) = p, which means that the inputs really
only have p degrees of freedom. Thus, the problem reduces
to having the same number of inputs as measured states. The
difference here is that we may be able to choose from the m
inputs p that are known to control directly each measurable
state.

D. The danger of steady-state measurements

This section clarifies some misconceptions that arise from
time to time in some scientific communities concerning
network reconstruction using steady-state data. For instance,
in [6] the authors proposed a method to estimate networks
based on full state measurement and control (i.e. n = p and
B =1). In this special case, for i # j, H;; = —a;j, since
G(s) = (sI—A)"" or H(s) = sI —A. Thus, a;j =0 (i # j)
if and only if H;; =0, which means the network structure
can be obtained from H.

However, in the realistic case there are less measurements
and control available than states. If instead of estimating G
from time-series data we were to use only steady-state data,
this could lead to mistakes as the following example shows.
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Consider a third order system with measurements and
control on the first 2 states x; and x; and the following
dynamics

-1 1 -1
A= 1 -1 -1
1 1 -1

This is a fully connected network, and so we expect the re-
duced network consisting on x| and x, to be fully connected
as well. In this case,

$242542 _ s
— s+1 s+1
H(S) s $2425+2
s+1 s+1

When s — 0,

which could lead one to think the reduced order network
is not connected at all, i.e. x; does not affect x, and vice
versa. In general, for third order systems this is always true
if and only if ajpasz + aj3a3» = 0 for the connection from
xp to x1 and anjass +axzaz; = 0 for the connection from x;
to xp. Note that even when these equalities are not exactly
zero but near zero, the presence of noise may again lead to
wrong decisions.

VI. CONCLUSIONS

This paper discussed the role of network structure for LTI
systems. In particular, it was shown that transfer functions
alone contain no information about the internal structure of
an LTI system. We then introduced a new representation for
such systems, a factorization of the system’s transfer func-
tion that we call dynamical structure. Dynamical structure
functions contain more information about the system than
the transfer function because they also describe the network
structure between inputs and outputs. Nevertheless, dynam-
ical structure contains less information about the system
than its state-space description because no attempt is made
to realize the network structure relating the non-measured,
hidden state variables to the rest of the system. In this way,
dynamical structure is a convenient analysis tool representing
system information at a resolution consistent with its number
of measured states, somewhere between a system’s full state
space realization (full structural information) and its transfer
function (no structural information).

We then used dynamical structure to explore the network
reconstruction problem. In this problem, one would like to
estimate network structure given only a transfer function
obtained from input-output data. This problem is extremely
important for a variety of fields, such as biology or counter-
terrorism, that attempt to draw structural conclusions from
data. Necessary and sufficient conditions were presented that
indicate that network reconstruction demands careful exper-
iment design. Moreover, various examples were provided
throughout the paper that demonstrate how failure to respect
the necessary conditions may lead to incorrect conclusions
about the network structure.
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