
J Intell Manuf (2008) 19:537–552
DOI 10.1007/s10845-008-0136-y

A dynamic workflow framework for mass customization using
web service and autonomous agent techniques

Daniel J. Karpowitz · Jordan J. Cox ·
Jeffrey C. Humpherys · Sean C. Warnick

Accepted: 17 May 2007 / Published online: 18 June 2008
© Springer Science+Business Media, LLC 2008

Abstract Custom software development and maintenance
is one of the key expenses associated with developing auto-
mated systems for mass customization. This paper presents
a method for reducing the risk associated with this expense
by developing a flexible environment for determining and
executing dynamic workflow paths. Strategies for develop-
ing an autonomous agent-based framework and for identify-
ing and creating web services for specific process tasks are
presented. The proposed methods are outlined in two differ-
ent case studies to illustrate the approach for both a generic
process with complex workflow paths and a more specific
sequential engineering process.

Keywords Autonomous agents · Product development ·
WEB services · Ontologies · Automation

Introduction

Tseng and Jiao define mass customization as “producing
goods and services to meet individual customer’s needs with
near mass production efficiency” (Tseng and Jiao 2001).
Automation of engineering product development processes
is essential to the implementation of mass customization.

D. J. Karpowitz · J. J. Cox (B)
Department of Mechanical Engineering, Brigham Young
University, 455 CTB, Provo, UT 84602, USA
e-mail: cox@byu.edu

D. J. Karpowitz
e-mail: daniel.j.karpowitz@boeing.com

J. C. Humpherys
Department of Mathematics, Brigham Young University,
Provo, UT, USA

S. C. Warnick
Department of Computer Science, Brigham Young University,
Provo, UT, USA

The objective of mass customization is to provide individu-
alized products and services by integrating processes that are
agile and flexible (Pine 1993). Production systems that utilize
automated, reusable processes are becoming an increasingly
important tool for improving the efficiency, accuracy, and
cost during the product lifecycle as well as enabling mass
customization.

Over the past two decades the development of process
automation tools such as Computer Aided Design (CAD),
Computer Aided Engineering (CAE), Computer Aided Man-
ufacturing (CAM), Product Data Management (PDM), Prod-
uct Lifecycle Management (PLM), and Enterprise Resource
Planning (ERP) have had a significant impact on process
automation. To realize many of the benefits of advanced CAx
tools, company processes must be captured and automated
through additional software development. The custom soft-
ware development that is often required to extend and inte-
grate these tools represents a significant investment of both
time and money. The risk of such an investment often pre-
vents businesses from implementing mass customization.

The key expense in this custom software development
comes from the automation system not being flexible enough
to adapt to changes in process tools and product markets.
Small changes in the tools, market, or most importantly the
product development process results in large additional
investments in software modifications. The volatility of prod-
uct markets and the rapid rate of new technology introduction
into product development threaten the possibility of success
in automating product development processes and ultimately
wide spread adoption of mass customization. In addition, fre-
quent changes in the market environment or engineering tools
and processes, make it difficult to maintain valid automated
processes after they have been created (Lander 1997).

This work presents a potential solution to reduce the risk
associated with the custom software development investment.

123

538 J Intell Manuf (2008) 19:537–552

The proposed method is structured around the deployment
of a web service-agent framework. Such a framework allows
product development systems to be automated using dynamic
methods which can reroute the path of a process workflow
as changes occur to the system.

The development of a dynamic framework involves imple-
menting single purpose tasks as web services and control-
ling the workflow process execution in a multi-agent system.
Using this method, decision and execution paths of the pro-
cess framework can be determined dynamically as the objec-
tives change. Multi-disciplinary optimization, sensitivity
studies, uncertainty propagation, artifact generation, and
design studies could each potentially produce different pro-
cess systems based upon the paths required to accomplish
the objective. The agent framework must be able to not only
identify and construct these different processes, but provide
a flexible execution method.

The general concept presented in this paper is to develop
a framework that enables “plug and play” capability for inte-
grating automated modules related to specific tasks in an
engineering process. This framework is developed once and
used for all subsequent automation projects, thereby reduc-
ing the software development to identification of task mod-
ules within an engineering process and the implementation of
these task modules in a “plug and play” form. Strategies and
methods for developing the overall framework, identifying
task modules within an engineering process, and preparing
the tasks in a “plug and play” form are also presented.

Background

The product design generator

The Product Design Generator (PDG) developed by Roach
et al. is “a computer-based tool that automatically creates all
of the design artifacts and supporting information that are
necessary for the design of a product that is customized to
meet the needs of a specific customer” (Roach et al. 2005).
Essentially, the PDG is a systematic approach to the crea-
tion of automated design modules for mass customization.
This approach requires a complete description of the prod-
uct development process, which along with business best
practices and company knowledge can be used to transform
unique customer requirements into a final product.

The concept of a PDG is fundamental to the successful
development of a web service-agent dynamic design system.
The formal expression of the design process through the PDG
methodology provides an established approach to mass cus-
tomization that has been used as the primary foundation for
this research. The PDG approach allows the existing tools
and methods to be captured and defined in a reusable form
that will improve the productivity of the design process in a
consistent and repeatable manner (Roach et al. 2005).

The development of the PDG and the mapping of individ-
ual engineering processes require the creation of a Product
Transformation Schematic (PTS) within a specified envelope
of variation. The PTS is defined by specific sets and process
maps that are used to transform customer requirements into
a range of products. The idea of a PTS is similar to the defi-
nition of a mathematical function, a single method extracted
from an infinite number of solutions for transforming one
set of numbers (the domain) into another set numbers (the
range). Like a mathematical function a specific PTS can be
realized by an infinite number of different PDGs. As a result,
each PDG is a unique implementation for a specific product
type (Roach 2003).

Service-oriented architecture (SOA)

A service-oriented architecture (SOA) is another one of the
key technologies which enable the development of a dynamic
framework for product development. In recent years much
of the progress of SOA concepts and technologies has been
driven by a desire to reduce network-based application devel-
opment time while also increasing the flexibility and connec-
tivity of applications. As a result, much of the information
technology industry has embraced an SOA approach, specifi-
cally one focused on web service standards, as the solution to
increased productivity in enterprise computing. It is expected
that adopting an SOA approach will open the door for flex-
ible, secure, and reliable communication over both internal
and external networks.

Service-oriented architecture is a development approach
to connecting applications, often exposed as services made
available over a network, so they can communicate and share
functions in a widespread and flexible way (Ort 2005). A ser-
vice is defined as a specific task or functionality implemented
in such a way as to facilitate consumption by clients in differ-
ent business processes or applications. One of the essential
characteristics of SOA is the idea of loose coupling between
services and clients. Loose coupling requires that the service
have a well defined interface (the “what”) which is separate
from the implementation (the “how”) (Young 2005). This
approach creates a flexible environment where the client is
not required to understand implementation details such as the
platform the service runs on, the language it is programmed
in, or what additional processing might be required for the
service to return a result. The client must only understand
how to interact with the service interface. Tightly coupled
services often share semantics, libraries, or state resulting in
a system that is difficult to maintain as environments or needs
change (Ort 2005).

In addition to the flexibility that results from implement-
ing an SOA, applications are also able to more easily scale
as demand increases or decreases. Because loose coupling of
services results in fewer dependencies between clients and

123

J Intell Manuf (2008) 19:537–552 539

services, asynchronous communication is possible. There-
fore, services are able to scale to meet required loads with-
out introducing the increased lag or delay experienced by a
tightly coupled system dependent on synchronous commu-
nication.

The reusability of services is one of the important bene-
fits driving widespread adoption of SOA concepts. Because
services separate the interface from the implementation, the
actual code exposed as a service can be reused as interface
requirements change. Functionality that is loosely coupled
in this way is more likely to be reused in future applications
than tightly coupled functionality built into a specific appli-
cation. Also, because the interface is the only part of a service
exposed to client consumers, legacy applications as well as
those developed by business partners can be used and reused
more readily.

The flexibility, scalability, and reusability of services cre-
ated in a SOA provide a cost effective solution to integrating
business applications. An SOA approach allows for reuse of
legacy applications, which could potentially include appli-
cations that were previously unusable, by adding a standard
service interface for client interaction. In addition, this SOA
creates a solution for integrating business partner applica-
tions with minimal custom development. More important to
this research, however, a SOA contributes to reducing the
risk associated with developing a product development sys-
tem that is dependent on custom software to integrate various
CAx tools. Product development systems based on SOA and
web service standards require less initial analysis and unique
code in developing applications custom engineering appli-
cations. Loosely coupled engineering services also provide
flexibility and scalability necessary for extended application
life and reduced maintenance costs.

Web service standards

Web services provide an effective, standards-based approach
to SOA. Each of these standards is based on eXtensible
Markup Language (XML), a general purpose markup lan-
guage, which uses “tags” similar to those used by HTML,
for describing and exchanging data over a network in an
organized and structured way.

The core web service standards defined in the WS-I basic
profile (Ballinger et al. 2006) include: Simple Object Access
Protocol (SOAP), an XML-based protocol for “exchanging
structured and typed information between peers in a decen-
tralized, distributed environment” (Mitra 2003); Web Ser-
vice Description Language (WSDL), an XML approach to
defining how to communicate with a given web service; and
Universal Description, Discovery, and Integration (UDDI),
which defines “how to publish and discover information
about services in a UDDI-conforming registry” (Ort 2005).

Like UDDI, ebXML is another web service standard that
includes a registry.

Many of the current registry technologies including UDDI
and ebXML standards do not provide a method for autono-
mous discovery and integration with web services. This is
primarily the result of a lack of machine understandable
information in the registry entry descriptions. Potential solu-
tions to this issue are discussed later in the context of semantic
web services.

Multi-agent design systems

During the last decade the concept of multi-agent systems has
become an increasingly important research field in both arti-
ficial intelligence (AI) and computer science. At the core of
much of this research has been an exploration of the science
of agent systems through both theoretical and experimental
results (Wooldridge and Jennings 1998). As multi-agent sys-
tems have become better understood by a wider community
not limited to just AI and computer science, agents theo-
ries have been successfully applied to engineering design
systems.

One of the primary motivations for developing engineer-
ing systems that utilize agent-based technologies is the lack
of flexibility and adaptability in current process automation
systems. Lander explains that “[d]esign, in particular, is char-
acterized by a constant evolution of software tools and tech-
niques and by the need to respond rapidly to changes in the
market and industry” (Lander 1997). Such extensive change
makes software maintenance in engineering design a par-
ticularly complex and difficult task. It is estimated that tra-
ditionally, software maintenance consumes 50–80% of an
application’s lifecycle cost (Lander 1997). In an attempt to
avoid this significant cost, traditional approaches to auto-
mated product development have been reduced to a narrow
product definition that is not as heavily influenced by such a
volatile environment.

The need for “diverse, highly sophisticated, and rapidly
changing skills and knowledge” as well as a more flexi-
ble approach to engineering design makes multi-agent sys-
tems “particularly appropriate for knowledge-based design”
(Lander 1997). Agent-based systems require minimal soft-
ware changes to existing tools by “wrapping” legacy code
with agent functionality, make process changes without alter-
ing system code, vault knowledge and data autonomously,
present an open and well defined knowledge representation
and behavior model, and are remotely accessible (Feng 2005).
These flexible characteristics dramatically reduce the cus-
tom software development and future maintenance associ-
ated with traditional automated engineering systems.

Like web services, agent technologies are another impor-
tant enabler of dynamic product development. Agent-based
systems are able to solve problems that are too large for a

123

540 J Intell Manuf (2008) 19:537–552

single-resource limited system; facilitate the interconnect-
ing and interoperation of multiple existing legacy systems;
provide solutions where the expertise and information is dis-
tributed; and enhance system speed, reliability, extensibil-
ity, and the ability to tolerate uncertain data and knowledge.
Many engineering systems rely on a vast catalog of legacy
software, extensive product and/or knowledge databases, and
parametric CAx tools for development and manufacturing.
Agent technologies provide many of the tools necessary for
linking these elements together in a dynamic, flexible system.

An agent is defined as “a computer system that is situ-
ated in some environment, and that is capable of autono-
mous action in this environment in order to meet its design
objectives” (Wooldridge 1999). While this characterization
is generic enough to apply to most agent implementations,
there is no universally accepted definition for the term
“agent”. In fact, “agent” has become a buzzword that is
often applied erroneously to expert systems, artificial intel-
ligence, object-oriented programming, and web service con-
cepts (Wooldridge and Jennings 1998; Wooldridge 1999;
Wooldridge and Dickinson 2005). Despite these discrepan-
cies, it is generally accepted that agent autonomy is key to
understanding this type of agency (Wooldridge and Jennings
1995).

Wooldridge makes several important points about agent
definition (Wooldridge and Jennings 1995). First, it is impor-
tant to distinguish between “agents” and “intelligent agents”.
The term agent represents a more generic definition that can
be extended by different properties or behaviors. An intelli-
gent agent is one such extension defined by flexibility, mean-
ing that it is:

• Autonomous—Agents control both their individual state
and behavior.

• Reactive—Agents are able to perceive changes in their
environment and respond in a timely manner.

• Proactive—Agents demonstrate goal-oriented behavior by
taking initiative to meet objectives.

• Social—Agents are able to communicate and work with
other agents to satisfy design objectives.

It is also important to understand that intelligent agents
are not limited to computer systems. Any entity that can
meet these conditions, including humans, can be treated as
an intelligent agent (Wooldridge and Jennings 1995). For
this research, the basic definition of an intelligent agent will
be used in developing an agent-based framework including
extending agent concepts beyond software applications.

Wooldridge also notes that the general definition of
an agent is not tied to any specific agent environment
(Wooldridge and Jennings 1995). Russell and Norvig (Rus-
sell and Norvig 1995) characterize an agent environment as:

• Accessible or Inaccessible—An accessible environment
enables an agent to accurately determine the environment’s
state at any given time.

• Deterministic or Non-deterministic—A deterministic
environment is one in which there is a specific, guaran-
teed outcome for an action.

• Episodic or Non-episodic—Agents that react in an epi-
sodic environment must determine if its actions will have
an impact beyond the current episode.

• Static or Dynamic—Dynamic systems require the agents
to adapt to change.

• Discrete or Continuous—A discrete system has only a lim-
ited set of potential agent actions.

Because agents can exist in a wide variety of environments
characterized by properties similar to those listed above, the
complexity of implementing an agent-based systems is nec-
essarily coupled with the agent environment.

Providing for agent communication is essential to devel-
oping more complex multi-agent systems. Several standard
languages have been proposed for use in multi-agent systems.
One of the more common languages is the Knowledge Query
and Manipulation Language (KQML) that was developed as
part of the ARPA Knowledge Sharing Effort (Shen et al.
2001). This messaging protocol allows agents to communi-
cate information by annotating messages to describe specific
requests. Another language in wide spread use in the Agent
Communication Language (ACL) (FIPA 2002). ACL is stan-
dard maintained by the Foundation for Intelligent Physical
Agents (FIPA) that functions similarly to KQML. The work
present in this paper does not attempt to employ a standard
language for use in the case study examples.

Web services and agents

The W3C Web Services Architecture specification defines
agents as, “…the running programs that drive web services—
both to implement them and to access them as computational
resources that act on behalf of a person or organization” (Bray
et al. 2006). This definition of an agent identifies one of the
primary motivations for implementing multi-agent systems.
According to Wooldridge, agents are primarily “responsible
for mediating between users’ goals, and the available strat-
egies and plans” (Wooldridge and Dickinson 2005). Agents
accomplish this by creating composite web service work-
flows and consuming individual services that satisfy design
objectives and goals.

Although web services and agents both provide a means
for encapsulating business or application knowledge, they
differ in that agents “do not simply expose functionality
as methods over a fixed protocol” (Greenwood and Calisti
2004). Rather, agents “offer multiple services, or behaviors,

123

J Intell Manuf (2008) 19:537–552 541

that can be processed concurrently and activated specifying
goals” (Greenwood and Calisti 2004). The abstract, goal-
driven behavior is unique to the definition of an agent. Unlike
web services which provide functionality through simple
executable methods, agents that act intelligently use knowl-
edge to react to and act on their environment autonomously
and proactively.

Web service-agent systems have recently become the focus
of a significant number of research activities. One of the
more apparent issues with web service implementation is
the creation of a framework that provides autonomous selec-
tion and consumption of the services. As agent technology
has matured, many have begun to address this problem and
investigate the use of an intelligent agent-based system as a
potential solution.

JADE (Java Agent DEvelopment Framework) is one of the
most pervasive agent development platforms in use
today (JADE 2006). JADE is an open source, middle-ware
solution for developing peer-to-peer agent applications that
comply with FIPA (the Foundation for Intelligent Physical
Agents) specifications for agents and multi-agent systems
(FIPA 2006). Recently this platform has been extended by
Greenwood and Calisti to provide development tools for web
service-agent interactions through the Web Service Integra-
tion Gateway Service (WSIGS). The primary goal of the
WSIGS extension to JADE is to provide a “transparent, bidi-
rectional access form/to web services to/from agent-based
services” (Greenwood and Calisti 2004).

Dickinson and Wooldridge have expressed concern over
the confusion that ultimately results to the core definitions
of web services and agents with WSIGS style bi-directional
integration (Wooldridge and Dickinson 2005). On one hand,
in order for web services to invoke agent behaviors it is
implied that the agents must expose a fixed, deterministic
behavior. This approach “violates the presumption of the
autonomy of the agent” and brings into question the validity
of referring to this component as an agent (Wooldridge and
Dickinson 2005). Likewise, if the agent behavior is not fixed
a web service must adopt ability to respond to the agent’s
autonomous responses. Conceptually this is closer to the def-
inition of an agent rather than a web service (Wooldridge and
Dickinson 2005).

Along with their critique of WSIGS, Dickinson and
Wooldridge identify some important behaviors of web ser-
vices and agents in an integrated system. First, agents and
web services share motivation to create flexible and adapt-
able systems, but are nevertheless distinct in their implemen-
tation and functionality. Second, agents are the responsible
party for composing complex service workflows from the
individual, atomic web services. Third, autonomy is only
represented at the agent level. Finally, agents are capable of
planning by decomposing high level goals in specific sub
goals (Wooldridge and Dickinson 2005).

Other important research focused on web service-agent
interaction includes the concept of extending UDDI with
the DARPA Agent Markup Language (DAML) presented
by Maximilien and Singh (Maximilien and Singh 2003); an
approach to adaptive workflow that uses the Business Pro-
cess Execution Language for Web Services (BPEL4WS) to
define the initial structure of a multi-agent system (Buhler
et al. 2003); a system that uses a workflow agent to dynam-
ically compose web service workflows by using semantic
descriptions of the services to find and match service inputs
and outputs (Laukkanen and Helin 2003); and the use of the
Web Ontology Language for Semantic Web Services (OWL-
S) to create middle agents to assist in dynamically discover-
ing and connecting with appropriate web services (Sycara et
al. 2004).

Semantic web & ontology

As web-based technologies such as web services and autono-
mous agents have become more mature and widely accepted,
the Internet has moved beyond a simple tool for communi-
cating textual and graphical information, to a provider of
services enabling automation and interoperation. Where the
Internet was once focused primarily on delivering content
for human interpretation, recent development trends have
focused on creating “web-enabled” applications and phys-
ical devices that capitalize on Internet-provided services.
One purpose of a Semantic Web—an extension of the cur-
rent Internet structure which attempts to communicate mean-
ing (semantics) in a machine understandable form—is to
enable reliable, large-scale interoperation between web ser-
vices, autonomous agents, and “web-enabled” applications
and devices by making service information computer inter-
pretable (McIlraith et al. 2001).

Fundamental to understanding the Semantic Web and ulti-
mately communication between services and agents is the
concept of ontologies and other data models that can be used
to represent some domain such as controlled vocabularies
and hierarchical taxonomies. Ontology is frequently defined
in relation to the Semantic Web as “a set of knowledge terms,
including the vocabulary, the semantic interconnections, and
some simple rules of inference and logic for some particular
topic” (Hendler 2001). Because ontology is often used to rep-
resent specialized concepts that may have specific meaning
to a particular sub-domain, high-level domains are necessary
to define essential concepts and merge the vocabulary of dif-
ferent sub-domains into a more generic representation (Shen
et al. 2001).

Web service and autonomous agent systems benefit from
using ontologies to “decipher the content of exchanged mes-
sages” (Shen et al. 2001). One of the problems with current
web service implementations is the difficultly in dynamically

123

542 J Intell Manuf (2008) 19:537–552

discovering and consuming the service without human assis-
tance. The public UDDI registry that was formally closed in
January 2006 by IBM, Microsoft, and SAP (Microsoft 2006)
attempted to provide a more universal approach to automatic
web service integration by using the UDDI standards to cat-
alog business services. Developers could access the registry
and search for services that would meet a desired objective.
However, without a formal method for providing semantic
information, human interpretation of the web service descrip-
tions was still required.

Unlike previous approaches, an ontology-driven, semantic
markup of registered web services would enable a machine
to automatically:

• Select web services for consumption based on a set of
user-driven requirements.

• Understand and independently act on input/output require-
ments and execution details of a particular service.

• Interface with multiple web services to provide results for
more abstract objectives.

The Web Ontology language for Services (OWL-S) (Mar-
tin 2004) is a markup language intended to facilitate these
results. Like its predecessors (e.g. DAML, OIL), related tech-
nologies (e.g. XML, RDF), and other unique approaches (e.g.
Semantic Annotations for WSDL) (Farrell and Lausen 2007),
OWL-S is an attempt to represent meaning and semantics
with machine-interpretable content.

While formal markup technologies are still limited in use
and maturity, other less sophisticated approaches are begin-
ning to emerge on the Internet. Web sites such as del.icio.us
(a social bookmarking service), Flickr (an internet photo
sharing service), YouTube (an internet video sharing ser-
vice), GMail (an internet email client), Technocrati (a weblog
search service), and many others all use metadata “tags” to
label and describe information and content (i.e. photos, vid-
eos, music, etc.). The process of “tagging” does not adhere
to a formal ontology or taxonomy, but rather uses a more
eclectic, collaboratively generated method of modeling data
referred to as folksonomy. Although categorizing informa-
tion in this way can create conflicts and confusion, it does
provide an important step in migrating to the more structured
idea of the Semantic Web.

Creating ontologies for a web services or agent-based sys-
tems that are focused on a specific function or utility requires
a different approach from the more general web situations
since the web is much larger in scope, often requires less com-
plex information, and does not have the same requirements
for automation and adaptation. In principle, a universal ontol-
ogy could be used for knowledge sharing, however, differing
system requirements, such as those already outlined, show
that a universal approach is not a practical approach (Shen
et al. 2001). For many systems, particularly the dynamic

product development framework presented in this paper, a
simplified, less-flexible approach to ontology is sufficient.

Methods

Agent-based control framework

The first step in creating a dynamic product development
system is to define an agent-based control framework. The
design of individual agents is highly dependent on how a spe-
cific agent control framework is implemented. Ultimately a
framework will have a significant impact on the location of
the system knowledge base, the method for both local and
remote communication, and the complexity of design prob-
lems that can be addressed. For example, a peer-to-peer agent
network will require a sophisticated agent with knowledge of
the entire system and ability to communicate with any other
available agents. While this method may have many different
practical applications, the framework can end up duplicating
knowledge and ability in different agents making some large
processes too inefficient for the peer-to-peer system.

For this research a more simple approach to an agent-
based framework has been adopted. Avoiding more complex
development of multi-agent systems enabled greater focus on
the practical engineering application of the general concepts
rather than just the nuances of developing an agent-based sys-
tem. As a result, generic agent framework was created that is
not coupled to any specific programming tools or engineer-
ing processes, and system agents are limited in knowledge
and communication ability. These agents are limited to pro-
viding only the services needed to generate an automated
engineering tool enabled by web service-agent interaction.

The control agents developed for the dynamic product
development framework serve the system in three ways:

1. Managing a web service registry and identifying potential
services.

2. Configuring process maps of all potential workflow paths.
3. Executing an automatically selected workflow path to

meet the system design objectives.

Implementation of these tasks was accomplished by cre-
ating three types of control agents: a web service registry
management agent, a workflow configuration agent, and one
or more workflow execution agents. The detailed function of
each of these agents is discussed in this section.

Web service registry management agent

The web service registry management agent (MA) is res-
ponsible for monitoring and updating system web service

123

J Intell Manuf (2008) 19:537–552 543

registries. The actual implementation of the MA will differ
depending on the type of registry or web service technologies
used by the system. For example, existing web service regis-
tries such as UDDI and ebXML registries often do not contain
enough information for successful autonomic service selec-
tion. In this case the MA must be capable of providing the
system with additional semantic information to will facilitate
automatic selection and execution by other system agents or
services.

One of the more simple methods for making semantic
information available would be for the MA to maintain and
update a supplemental database which would provide the
enhanced web service. The MA would be responsible for
gleaning web services semantics through description lan-
guages such as OWL-S (Martin 2004) and/or by calling web
service methods specifically designed to provide detailed ser-
vice information. The system framework developed for this
research uses the latter approach to gathering web service
details for the web service registry.

In addition to registry management, the MA also has the
responsibility to notify the workflow configuration agent of
any new services, removed services, or changes to existing
services that could alter an established workflow (e.g. chang-
ing the output type of a critical service, moving a service
to another network location). This function requires that the
MA have some knowledge of how the framework establishes
a specific process workflow in order to identify impacting
changes.

Workflow configuration agent

It is the responsibility of the workflow configuration agent
(CA) to determine the potential workflow paths for the ser-
vices registered with the system. Engineering workflow is
defined for this research as the process of executing individ-
ual engineering tasks in a specific process order. Specifically,
this workflow is established independent of the agent frame-
work by the mappings of the PTS (Roach et al. 2005). The
CA identifies the workflow paths by determining the asso-
ciated input and output sets of the registered web services
and then backwards mapping to link the services in a work-
flow pattern. One procedure for identifying links between the
process input and output sets is presented by Laukkanen and
Helin (Laukkanen and Helin 2003). By using a backwards
mapping technique, all possible workflow paths for a given
product development process can be determined. The CA
maintains a system workflow repository by adding new pro-
cess maps and removing workflow paths with invalid services
after receiving updates from the MA.

In addition to determining a specific workflow path the
CA may also be required to determine workflow cost (i.e.
resources, time, etc.) and overall process capability (i.e. pro-
cess variation, input sensitivity, etc.). The CA uses additional

semantic data to enhance more basic workflow information
which can be stored along with the process map in the work-
flow repository. As new or altered web services create addi-
tional available workflows, the agent framework can use this
semantic data to automatically select and execute the best
process for a specific application.

Key to the success of the CA is the development of a
system language for describing process workflow. Without
a robust process language the system would not be able to
understand workflows with complex bifurcation or nested
sub-processes. The Business Process Execution Language
for Web Services (BPEL) developed by Microsoft and IBM
provides a standard format for defining the structure of a
process (Andrews et al. 2003). BPEL is an XML based lan-
guage that describes complex process structures, attributes,
and external processes relationships. Process languages such
as BPEL may be helpful for describing complex processes
(Laukkanen and Helin 2003); particularly processes that
result require any recursive behavior or systems that employ
sophisticated ontology.

While the actual process description language used by the
CA is not important, it is critical that the CA does at least
provide the minimum information required by the execution
agents for dynamic web service binding and invocation. A
simple process language was developed for this research that
described a process by web services linked by similar inputs
and outputs. Using a simple language of this type limited
initial prototypes to linear processes with simple bifurcation.

Workflow execution agent

The workflow execution agent (EA) is responsible for con-
trolling the execution of a specific engineering process. While
both the MA and CA have a fixed objective, updating the
web service and workflow registries, the system framework
may have any number of different EAs each with a dif-
ferent execution objective. These objectives could include
multi-disciplinary optimization, sensitivity studies, uncer-
tainty propagation, or artifact generation. Because agent tech-
nologies enable intelligent and autonomous action, product
development systems can capitalize on unused resources (e.g.
network or computing system downtime) to train neural nets,
explore design space, or improve individual agent knowledge
base.

The communication and interaction between multiple EAs
and other system agents must be handled by a multi-agent
environment capable of managing agent interaction to meet
any system-level goals specified for the product development
process. EAs embody the intelligence needed for truly auton-
omous actions, while the MA and CA function to provide
the semantic information required by the EAs. The EAs are
the agents that answer the system-level engineering process
questions (e.g. Which design provides maximum life? How

123

544 J Intell Manuf (2008) 19:537–552

do I minimize cost?) These top level questions are posed
to the EAs which in turn explore the variety of workflow
paths identified by the CA to find answers to these questions.
This method of problem decomposition provides significant
flexibility in posing the top level questions by answering
the question with different workflow paths, technologies, or
combinations of process task modules.

Improvements in process technologies or changes in pro-
cess steps can be automatically implemented by the EAs once
the CA is notified of changes to the set of available ser-
vices by the MA, updates the workflow repository with new
process maps, and then provides notification of change to
the EAs. To illustrate this concept consider an engineering
process for predicting deflection in some product compo-
nent. The original process may include the use of traditional
closed-form linear equations captured in a spreadsheet, and
the initial workflow paths identified by the CA might include
this spreadsheet implemented as a stand alone web service.
If later in the product life it is determined that more sophisti-
cated deflection results are needed, a finite-element technique
might be developed as a web service and the module intro-
duced into the system. A secondary workflow path would be
identified by the CA which would include the finite-element
module instead of the spreadsheet. Determination of which
workflow to use would be determined by the EAs based upon
criteria most likely linked to an engineering process question
such as quality of prediction based on field data or empirical
correlations.

Identifying and creating web services

Determining the web services (i.e. process task modules) to
use in the system framework requires following a theoretic
process decomposition to extract the specific tasks associated
with a given product development process. This decompo-
sition involves identifying the associated input and output
variables of a process task, backwards mapping the depen-
dencies, and defining the tasks that convert the inputs to the
outputs. Backwards mapping is a simple dependency reso-
lution process starting with the desired result of the process
and working backwards to identify the required inputs.

This decomposition links the inputs and outputs as well
as the tasks into a single theoretical integrated workflow as
described by Roach et al. (Roach et al. 2005) in the formu-
lation of the PTS. This procedure identifies the necessary
low level process tasks, referred to by Roach as intermediate
mapping functions, which link the system inputs and out-
puts. Each of the identified intermediate maps then must be
structured and implemented as a web service. In this way,
all necessary tasks for the specific product development pro-
cess are defined, allowing complete coverage for the overall
product development process. The integration of these web
services into the specific process is left to the CA.

Once the services are identified, they need to be exposed
for consumption by the agent-based framework. This can
be accomplished by creating a web service for each process
task module in the product development process. Although
web service technologies are focused on set description and
communication standards, there are a number of different
methods for implementing these standards. The solution out-
lined in this paper does not require that any one particular
solution be used. However, the selected web service imple-
mentation must provide for a dynamic method for binding
to and consuming the web services. Some existing web ser-
vice APIs and autonomous agent development tools such as
the JADE platform provide the necessary resources for cre-
ating dynamic web service-agent interactions (Greenwood
and Calisti 2004).

The CA must follow some type of system language in
order to successfully map the potential workflow paths. A
system language is a common syntax for defining the process
task inputs and outputs. Decomposition and web service crea-
tion has a significant impact on the common system language
that will be used to define the service inputs and outputs. In
more complex systems a simple system language may not be
sufficient for describing all potential links between services
or may be overly restrictive. In this case, detailed system
ontology can be used to create object-oriented structure for
the system language. Once the system language is determined
all web services must represent their different operations in
this format, whether by exposing the information through a
semantic description format or by reporting this information
through executable methods.

Results

Case study no. 1: ring example

To better illustrate the proposed method, an example case
study was created. In this case study, a generic engineering
process was selected and modeled as a sequential process that
connects four components together into a ring structure. This
could represent an assembly of four parts, an interlinked anal-
ysis process, etc. In this example, the ring is constructed by
assembling parts A–B–C–D in the correct order. It is impor-
tant to note that part A cannot be added to C without first
adding either B or D. A similar rule also holds for parts B, C,
and D. Each action box shown in Fig. 1 represents potential
process tasks, services, or the action of particular agents. For
the proposed method to be successful, the prototype system
must be capable of finding all possible workflow paths, iden-
tifying and executing a workflow path based on some criteria,
and be able to handle creation, removal, or changes to the sys-
tem services without requiring any additional system-level
software modifications.

123

J Intell Manuf (2008) 19:537–552 545

Fig. 1 Process schematic for creation of basic ring structure

The schematic shown in Fig. 1 represents the results of the
backwards mapping process and decomposition which can
now be used to identify the tasks or services to be created.
The process of creating the ring structure can be decomposed
into four separate process tasks: Add A, Add B, Add C, and
Add D. Each of the process boxes in the schematic can be
subdivided into these sub-functions. In most cases, only the
most basic and unique functions need to be captured as ser-
vices.

For this study, the service action was represented by a sim-
ple mathematical operation and a quality metric representing
process variation was arbitrarily assigned for each operation.
In order to create process paths that would have a different
total variation, a dependency was created between the order
in which a process task was executed and the variation in the
operation. For example, if “Add A” service was executed first
it might have a lower process variation than if it was executed
last.

After identifying the services needed for the ring creation
process, the web service framework was created. For this
prototype, XFire, an open source web services API (XFire
2006) based on the Java programming language, was used.
The primary motivation for selecting XFire over other more
widely used solutions by IBM, Microsoft, or Sun Microsys-
tems was the ease of creating services for automatic binding
and invocation. Most commercial solutions for developing
a web service framework require that the programmer have
some knowledge of the specific services that will be con-
sumed. For each service in the system a custom function
call or other individualized method for service consumption
must be developed prior to run time. Without a more generic
method for consuming a web service, a client (the execution
agents in the system) will not be able to dynamically adapt
to changes in process workflow or available services without
reprogramming the web service-client interface.

XFire, unlike other solutions, has a simple, generic inter-
face for consuming web services. Clients developed using
this API use a single function that can be executed with input
and output parameters not specific to any one web service.
An XFire web service can provide the function parameters as
part of a semantic description allowing the client to use the

same interface for all web services in the system. Because
the XFire client uses a generic method for consuming web
services, any changes to process workflows or individual ser-
vices can be incorporated during run time. No human input
is required and the system can adapt to changes of this type
automatically. In addition to providing a flexible interface for
web service consumption, XFire also allows for web services
to be created from basic Java objects. This reduces much of
the initial complexity associated with developing a specific
web service implementation, which is often a major hurdle
in creating web service applications.

In order to facilitate the population of the web service reg-
istry, each service implemented a number of reporting meth-
ods that could be called by the agent framework to glean the
additional information necessary for workflow creation and
dynamic execution of the services. Because this approach
represents the web service details as executable reporting
methods rather than through a more descriptive semantic web
service interface, it was necessary to create registry manage-
ment agents that would update the web service registry in two
separate steps. First the agent must search the web services
deployment file system for the “services.xml” file that is cre-
ated as part of XFire development. From this file the names
and locations of all available services is registered. Once this
information has been determined the agent is then able to
call the standard reporting methods (which might be unique
to each individual system) to update the registered services
with the remaining descriptive information. Figures 2 and 3
show the MA adding the available web services and updating
their descriptive information in this two-step process.

In addition to the reporting methods, each web service
also implements a unique method representing the core task
operation. Because each service operation can be used in
a number of possible ways (i.e. add A as the initial ele-
ment, add A to B only, add A to D only, add A to BC, add
A to CD, add A to BCD), each service reports correlating
sets of input requirements, output produced, and variabil-
ity for different operation use cases. The input and output

Fig. 2 Registered web services from “services.xml” file

123

546 J Intell Manuf (2008) 19:537–552

Fig. 3 Registry update from
web service reporting methods

Fig. 4 Example workflow
paths mapped by configuration
agent

sets were defined according to a simple system language that
would allow inputs and outputs from different services to be
matched during workflow mapping.

Once the process services were created and registered the
CA was able to map all 16 available processes, two of which
are shown in Fig. 4. Each of these workflow paths was stored
in the workflow repository along with the total variation of
each process. The EA was implemented so as to select the
process with the lowest total variation. Figure 5 shows the

successful execution of the optimal workflow path based on
this criterion.

In order to demonstrate the dynamic nature of the sys-
tem framework, an alternative process task was created that
would perform the same operations as the “Add B” web ser-
vice using a different method which lowered variability. As
a result, all workflow paths that included this new service
would have a lower total variability than those using the
original “Add B” service. Creation and registration of the

123

J Intell Manuf (2008) 19:537–552 547

Fig. 5 Workflow execution by process execution agent

Fig. 6 Registry update with alternative web service

alternative service required only that a new Java object be
created from the same template as the other services and
that the agent framework recognize the new service, add it
to the registry, and map any new workflow paths. After the
web service registry was updated the CA was able to find
the additional 16 workflow paths and the new optimal path
which included the alternative service was selected and exe-
cuted by the EA. The results from this procedure can be seen
in Figs. 6 and 7.

Fig. 7 Workflow execution with alternative web service included

Case study no. 2: impeller example

In order to demonstrate the application of the proposed
method to a practical engineering problem, an automated
modeling and analysis process for an impeller design was
used for this case study. Although the core operations for the
necessary web services used in this example required more
sophistication and interaction with external applications, the
method for creating the services and deploying them in the
agent-based framework remained the same.

The first step in creating the impeller design framework
was to identify the individual process tasks using a backwards
mapping technique. It is important that these tasks are first
defined on a general level and are not coupled to any specific
CAx tools. This enables a necessarily flexible process that
is driven by proven engineering design practices rather than
the current implementation of available design tools. For this
case study the workflow was subdivided into the following
tasks:

1. Update the parametric models for structural and air solid
wedges.

2. Create surface and volume meshes for the air solid wedge.

123

548 J Intell Manuf (2008) 19:537–552

Fig. 8 Registered web services for impeller design process

3. Determine surface pressure values for the air solid wedge.
4. Createsurfaceandvolumemeshesfor thestructuralwedge.
5. Determine maximum stress values for the structural

wedge.

Once this general workflow was identified, specific CAx
tools and implementation methods were selected for each
process task and their function(s) embedded in an XFire web
service. In this example, the process task modules and the
resulting web service implementation were far more sophis-
ticated than the ring example. While successful automation
of these process tasks required a programmatic interface with
parametric CAD models as well as parametric finite-element
models for both CFD and stress calculations, the workflow
was much less sophisticated than the ring example since it
was a simple linearly sequential process. Most practical engi-
neering processes follow a quasi-linear sequential process
and are made up of sophisticated services.

In addition to implementing the process design tasks as
web services, a system process language was identified from
the inputs and outputs of the individual modules. Because the
process language followed the same patterns used in the ring
example no additional changes were required to the configu-

ration agent. Changes were made, however, to the execution
agent. Because there was not a measurable metric for each
process module the variation calculations were removed from
the execution agent.

Like the ring example, the web service registry was pop-
ulated by first identifying available modules from the “ser-
vices.xml” file and then executing predefined reporting
methods to provide the necessary execution details and
semantic information for each process task (e.g. inputs, out-
puts, network location). For this case study Derby, an open
source database based on Java, JDBC, and SQL standards,
was used to store the agent information. A separate instance
of the Derby database was also used to store the single lin-
ear workflow identified by the CA. Figure 8 shows the MA
adding the process tasks to this database and Fig. 9 shows the
linear process mapped by the CA.

In order to maintain flexibility, the only system level infor-
mation required by the individual web services is the name
and location of a user specific working directory. Web ser-
vices use this directory as a repository for inputs, outputs,
and any resulting design artifacts, eliminating any need for
communication between the services. The execution agent’s
responsibility is to provide the location of the working direc-
tory to all web services during execution.

For this case study the EA is represented by a Java servlet
that receives the name and location of the working direc-
tory, impeller blade angles, and number of impeller blades
as user input. Following the linear process identified by the
CA and stored in the Derby database, the execution agent
invokes the CAD service which uses the user input parame-
ters to update a parametric model of the impeller in CATIA
V5. Once the model has been updated, a structural wedge
and air solid wedge are created and saved as IGES files
in the working directory. The IGES file is a neutral data
format that enables the geometric definition of the impel-
ler to be interpreted by a wide range of CAx tools.
Figure 10 shows the actual IGES data for the structural wedge

Fig. 9 Workflow path mapped
by the configuration agent

123

J Intell Manuf (2008) 19:537–552 549

Fig. 10 IGES data for the
impeller structural wedge

Fig. 11 CATIA representation of the structural wedge

while Fig. 11 shows the CATIA V5 interpretation of this
information.

After receiving confirmation from the CAD service that it
has finished executing and successfully created the IGES files

for the impellerwedges, theEAinvokes themeshservice.This
service uses HyperMesh to build surface and volume meshes
for finite-element calculations from the air solid IGES file
stored in the working directory. Once created, the meshes are
then saved to this same directory. Figure 12 shows the surface
mesh for the air solid wedge created by HyperMesh.

The impeller design process continues after the mesh ser-
vice has executed, stored the output in the working directory,
and returned control to the EA. The next step identified by the
CA is providing pressure values from a fluid analysis pack-
age such as Fluent. The EA accomplishes this by invoking
the pressure service with the working directory as input. Flu-
ent uses the HyperMesh output files and iterates through air
flow calculations to determine the pressure on the impeller
blade surfaces. The final solution is then written to a text file
and saved in the working directory. Figure 13 is a screenshot
of the pressure distribution that is also output to the working
directory by this service.

Execution of the stress analysis service follows a proce-
dure very similar to the operation of the pressure service.
The stress analysis service both writes and runs an AN-
SYS macro that inputs the pressure data from the working
directory to produce stress values for the structural wedge.
Figure 14 shows the Von Mises stress plot that is part of the
service output.

It is important to note that because this design process is
composed of self contained services integrated into a flexi-
ble framework introduction of a new CAx tool or moving an
existing tool would only require that the registry be reinitial-
ized. The dynamic nature of the framework will then create

123

550 J Intell Manuf (2008) 19:537–552

Fig. 12 Surface mesh for the
air solid wedge produced by
HyperMesh

Fig. 13 Fluent pressure
distribution for the air solid
wedge

a new workflow using the new web service and add this to
the database where it can be accessed for execution by the
EA. Sophisticated workflow paths that include bifurcation,
loops, etc. can be handled using process execution languages
such as BPEL or by introducing recursion and hierarchy into
the service definitions (Young 2005) without changing the
methods already presented.

Conclusion

The presented method of establishing a dynamic system
framework that divides the software maintenance into devel-
opment of a generic system framework and specific pro-
cess task modules allows companies to better understand and
manage custom software investment. As a result, a company

123

J Intell Manuf (2008) 19:537–552 551

Fig. 14 Stress plot produced by ANSYS for the structural wedge

can implement a management strategy to maintain a system
framework for all automated engineering projects and then
provide templates for process task module development. The
web services can be created and managed by the engineers
involved with the specific process. Typically they are the most
knowledgeable about the specific task and the tools used to
accomplish it and therefore are the most qualified to create
and manage the specific process task module. Any require-
ment to know the system-level protocols for tying task mod-
ules together into automated process systems is eliminated.

The method presented therefore provides a way to bet-
ter match the normal decomposition of knowledge and tasks
based on personnel involved in the process and a more man-
ageable approach to software development and maintenance.
This will hopefully eliminate any resistance to engage in
process automation projects require to truly implement mass
customization.

The goals outlined in the introduction of this work were
met during the course of this research. First, a flexible design
system was defined using web service and agent technolo-
gies. Specifically, the definition of a Web Service Registry
Agent, Workflow Configuration Agent, and Workflow Exe-
cution Agent was developed along with a framework for
integrating these agents. A process for identifying and creat-
ing web services from a specific process was also presented.
Finally, the feasibility of the proposed system was demon-
strated with a generic example (the ring structure) and a spe-
cific engineering example (the impeller design).

Future work includes the implementation of hierarchy,
recursion, and other sophisticated methods to allow bifurca-
tion and looping in processes. More sophisticated implemen-
tation of EAs to accomplish multi-disciplinary optimization,
design studies, etc. is also needed. In addition, future research
should include developing methods to analyze and contrast
competing workflow paths to develop improved efficiency
and scheduling.

References

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann,
F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I.,
& Weerawarana, S. (2003). Business process execution lan-
guage for web services. ftp://www6.software.ibm.com/software/
developer/library/ws-bpel.pdf, IBM Developer Works.

Ballinger, K., Ehnebuske, D., Ferris, C., Gudgin, M., Liu, C. K., Not-
tingham, M., & Yendluri, P. (Eds.). (2006). WS-I basic profile version
1.1. http://www.ws-i.org/Profiles/BasicProfile-1.1.html, Web Ser-
vices Interoperability Organization.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., Yergeau, F., &
Cowan, J. (Eds.). (2006). Extensible Markup Language (XML) 1.1.
http://www.w3.org/TR/xml11/, W3C.

Buhler, P., Vidal, J. N., & Verhagen, H. (2003). Adaptive workflow =
web services + agents. In Proceedings of the International Confer-
ence on Web Services, Las Vegas, NV. CSREA Press.

Farrell, J., & Lausen, H. (Eds.). (2007). Semantic annotations for WSDL.
http://www.w3.org/TR/sawsdl/, W3C.

Feng, S. C. (2005). Preliminary design and manufacturing planning
integration using web-based intelligent agents. Journal of Intelligent
Manufacturing, 16, 423–437.

Foundation for Intelligent Physical Agents (FIPA). (2002). FIPA
ACL message structure specification. http://www.fipa.org/specs/
fipa00061/index.html.

Foundation for Intelligent Physical Agents (FIPA). (2006). Welcome to
FIPA! http://www.fipa.org/.

Greenwood, D., & Calisti, M. (2004). Engineering web service-agent
integration. In IEEE Systems, Cybernetics and Man Conference, The
Hague, Netherlands.

Hendler, J. (2001). Agents and the semantic web. In IEEE Intelligent
Systems. Mar–Apr, 2001.

Java Agent DEvelopment Framework (JADE). (2006). An open source
platform for peer-to-peer agent based applications. http://jade.tilab.
com/.

Lander, S. E. (1997). Issues in multi-agent design systems. IEE Expert,
12(2), 8–26.

Laukkanen, M., & Helin, H. (2003). Composing workflows of seman-
tic web services. In Proceedings of the 1st International Work-
shop on Web Services and Agent Based Engineering, Sydney,
Australia.

Martin, D. (Ed.). (2004). OWL-S: Semantic markup for web services.
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/,
W3C.

Maximilien, E. M., & Singh, M. P. (2003). Agent-based architecture
for autonomic web service selection. In Proceedings of the 1st Inter-
national Workshop on Web Services and Agent Based Engineering,
Sydney, Australia.

McIlraith, S. A., Son, T.C., & Honglei, Z. (2001). Semantic web ser-
vices. In IEEE Intelligent Systems, Mar–Apr, 2001.

Microsoft. (2006). UDDI business registry shutdown FAQ. http://uddi.
microsoft.com/about/FAQshutdown.htm.

Mitra, N. (Ed.). (2003). SOAP Version 1.2 Part 0: Primer. http://www.
w3.org/TR/soap12-part0/, W3C.

Ort, E. (2005). Service-oriented architecture and web services:
Concepts, technologies, and tools. http://java.sun.com/developer/
technicalArticles/WebServices/soa2/index.html, Sun Developer
Network.

Pine, J. B. (1993). Mass customization: The new frontier in business
competition. Boston: Harvard Business School Press.

Roach, G. M. (2003). The product design generator—a next generation
approach to detailed design. Provo, UT: Brigham Young University.

Roach, G. M., Cox, J. J., & Sorenson, C. D. (2005). The product design
generator: A system for producing design variants. International
Journal of Mass Customization, 1(1), 83–106.

123

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://www.ws-i.org/Profiles/BasicProfile-1.1.html
http://www.w3.org/TR/xml11/
http://www.w3.org/TR/sawsdl/
http://www.fipa.org/specs/fipa00061/index.html
http://www.fipa.org/specs/fipa00061/index.html
http://www.fipa.org/
http://jade.tilab.com/
http://jade.tilab.com/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://uddi.microsoft.com/about/FAQshutdown.htm
http://uddi.microsoft.com/about/FAQshutdown.htm
http://www.w3.org/TR/soap12-part0/
http://www.w3.org/TR/soap12-part0/
http://java.sun.com/developer/technicalArticles/WebServices/soa2/index.html
http://java.sun.com/developer/technicalArticles/WebServices/soa2/index.html

552 J Intell Manuf (2008) 19:537–552

Russell, S., & Norvig, P. (1995). Artificial intelligence: A modern
approach. Prentice-Hall.

Shen, W., Norrie, D. H., & Barthès, J. A. (2001). Mult-agent systems for
concurrent intelligent design and manufacturing. London, England:
Taylor and Francis.

Sycara, K., Paolucci, M., Soudry, J., & Srinivasan, N. (2004). Dynamic
discovery and coordination of agent based semantic web services.
In IEEE Internet Computing, May–June, 2004.

Tseng, M. M., & Jiao, J. (2001). Mass customization. In G. Slavendy
(Ed.), Handbook of Industrial Engineering: Technology and Opera-
tions Management (3rd ed.). Hoboken, NJ: Wiley.

Wooldridge, M. (1999). Intelligent agents. In G. Weiss (Ed.), Multi-
agent Systems. Boston: The MIT Press.

Wooldridge, M., & Dickinson, I. (2005). Agents are not (just) web
services: Considering BDI agents and web services. In Proceeding
of the 2005 Workshop on Service-oriented Computing and Agent-
based Engineering (SOCABE 2005), The Hague, Netherlands.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory
and practice. Knowledge Engineering Review, 10(2), 115–152.

Wooldridge, M., & Jennings, N. R. (1998). Pitfalls of agent-oriented
development. In Proceedings of the Second International Confer-
ence on Autonomous Agents, Minneapolis, MN, pp. 385–391.

XFire. (2006). Codehaus XFire. http://xfire.codehaus.org/.
Young, J. M. (2005). Nesting automated design modules in an inter-

connected framework. Provo, UT: Brigham Young University.

123

http://xfire.codehaus.org/

	A dynamic workflow framework for mass customization usingweb service and autonomous agent techniques
	Abstract
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

