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ABSTRACT

APPLICATION AND PROPERTIES OF

DYNAMICAL STRUCTURE FUNCTIONS

Russell E. Howes

Department of Computer Science

Bachelor of Science

This thesis describes the motivation for dynamical structure functions in systems

theory, proves some of their theoretical properties, and illustrates their utility in the

identification of complex dynamical systems. Dynamical structure functions offer a

framework for representation of linear, time-invariant (LTI) networks that provides

information on the dynamical effects of the observed states on the inputs and other

observed states, either directly or through hidden states. This representation can be

contrasted with the transfer function, which only describes dynamical correlations

between the inputs and the observed states in a network. We review the motivation,

definitions, and derivations behind dynamical structure functions and develop some

deeper theoretical results on the properties of dynamical structure; specifically, that

any transfer function is arbitrarily close to a transfer function for which there exists

a minimal, decoupled realization. We build upon previous work relating to infor-

mation necessary to fully characterize the network when given input-output data



and define a series of operations on the system, derived from common biological

experiments, with which we can determine the dynamical structure.

We discuss an implementation of our predictive method, and detail future work

in comparing this method’s performance with that of several other, commonly-used

predictive methods.
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Chapter 1

Introduction

One of the fundamental issues in the identification of dynamical systems is that of accu-

rately determining a system’s structure; that is, the presence or absence of causal relation-

ships, or “connections”, between any two variables in a system. The process of determining

a system’s structure is called reverse engineering and involves algorithms that take available

data about a system’s dynamics and return the algorithm’s ‘best guess’ at system structure,

usually in the form of a matrix, graph, or list of equations. There are various ways in which

structural knowledge can be useful in analyzing a system. For example, a large system

can sometimes be highly connected within smaller subsystems. Accordingly, we can de-

compose the network and look at the smaller systems. Examples in which knowledge of

structure can aid in analyzing large systems include business and academic organizations

(where each department can be highly interconnected but connections between departments

are more sparse); terrorist or drug trafficking operations (intelligence operations can usually

identify leadership and partnerships in such organizations based on frequency of communi-

cation); and population networks (epidemiologists use network structure to predict the rate

a disease will spread through a given area based on its population and proximity to travel

routes).

1



2 Chapter 1 Introduction

The structure identification problem has generated high interest among biologists study-

ing genetic regulatory networks. As DNA microarray experiments become less expensive

and more widely used, obtaining dynamical data from a given biochemical network has be-

come cheaper and easier. However, accurate identification of these networks is difficult due

to reasons such as inaccuracies in data measurements, lack of structural uniformity among

cells of a single organism or cell type, and very high levels of system complexity. Re-

construction methods are constantly evolving to better take into account these challenges.

Some of these methods emphasize predicting system dynamics (predicting reactions to sys-

tem inputs) over structure (connections among states). This is adequate for some applica-

tions, but accurate knowledge of system structure can be useful–for example, in designing

a drug to stimulate or inhibit a certain, undesired reaction without affecting other reactions.

The authors in [1] introduce dynamical structure functions as a rigorous description of

system structure, in terms common to engineering and control theory. This thesis extends

the theory introduced in [1], and illustrates a potential method for reverse engineering a sys-

tem’s dynamical structure function, using experiments known and available to biologists.

The next section begins by stating the main points of [1] as they define dynamical structure,

and relates the dynamical structure of an LTI system to its state-space representation and

transfer function. We discuss concepts relating to minimality, sparsity, and decoupledness

of systems, and show sufficient conditions on a transfer function for it to have a mini-

mal realization that is completely decoupled. These sufficient conditions illustrate that any

transfer function is arbitrarily close to one which has a decoupled minimal realization. We

then summarize some of the popular methods used in identifying biological networks, ana-

lyzing their strong and weak points. The following section details a reconstruction method

which uses properties of dynamical structure to identify the structure and dynamics of a

biological network. This work concludes by discussing limitations of our work, and future

directions for research in this area.



Chapter 2

Theory of Dynamical Structure

Functions

The network structure of a dynamical system is a description of the causal dependencies be-

tween system variables. These dependencies are typically represented by a directed graph

where variables of the system are nodes, and an arrow between nodes indicates a causal

relationship between variables. (See Figure 2.1) This graph is also called the “network

topology” [2] or “connection topology”, and is sometimes referred to as Boolean structure.

In such cases, the actual ‘network structure’ is described by attaching numerical parameters

to each arrow in the Boolean structure.

The transfer function of a linear, time-invariant (LTI) system is an input-output repre-

sentation of the system. It is not surprising that the transfer function does not fully char-

acterize the internal structure of a system. One might think, however, that some structural

information could be derived from the transfer function. Nevertheless, as shown in [1], it

turns out that every transfer function G has a state-space realization that is consistent with

any possible internal structure.

We illustrate this fact with a simple example. Consider a system with the following

3



4 Chapter 2 Theory of Dynamical Structure Functions

transfer function:

G(s) =

[
1

s+1
1

(s+1)(s+2)

]
. (2.1)

It can be shown that this transfer function is consistent with two systems with very

different internal structures, given by

A1 =

 −1 0 0
0 −2 1
0 0 −1

 , B1 =

 1
0
1

 , C1 =
[

1 0 0
0 1 0

]
and

A2 =
[
−1 0

1 −2

]
, B2 =

[
1
0

]
, C2 =

[
1 0
0 1

]
.

The networks in Figure 2.1 correspond to each of the indicated realizations of G. It is

easy to show that the remaining pair of distinct internal structures (y1← y2 and y1 
 y2)

can likewise be obtained from suitable realizations of G.

x2
u   

x1

u x2x1

Figure 2.1 Two possible networks given the transfer function: decoupled internal
structure (left) and coupled internal structure (right).

It seems plausible that specification of the system order may lead to network recon-

struction. Nevertheless, order in and of itself is not enough information to reconstruct the

system network from its transfer function. An exception to this is when a bijective relation-

ship between the measured outputs and the system states is known to exist. In this case, the

network structure is determined precisely by the transfer function. However, measurement

of the entire state vector is unreasonable in most situations.

Not even knowledge of minimality (a system’s order being the lowest possible for that

transfer function) is sufficient to recover system structure from its transfer function. As the

following example illustrates, minimal realizations of simple systems with known output

equations can have starkly different network structures. The following transfer function
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G(s) =
1

s+3

[ 1
s+1

1
s+2

]
is consistent with systems with very different internal structures, for example

A1 =

 −1 0 1
0 −2 1
0 0 −3

 , B1 =

 0
0
1

 ,

A2 =

 −2 −1 1
−1 −3 1

0 −1 −1

 , B2 =

 0
0
1

 ,

and

C1 = C2 =
[

1 0 0
0 1 0

]
.

The networks in Figure 2.2 correspond to each of the indicated realizations of G. Note

that both realizations are minimal.

x2

x1
  

u

x2

x1
  

u

Figure 2.2 Two possible networks corresponding to minimal realisations of the
transfer function: decoupled (left) and coupled (right) internal structure.

This inability of the transfer function to describe system structure, even under assump-

tions of minimality, is the driving motivation behind dynamical structure functions.

2.1 Derivations

We consider the LTI system given by[
ẏ
ẋh

]
=

[
A11 A12
A21 A22

][
y
xh

]
+
[

B1
B2

]
u

y =
[

I 0
][ y

xh

] (2.2)
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where x = [ y′ x′h ]′ ∈ Rn is the full state vector, y ∈ Rp is a partial measurement of the

state, xh are the n− p “hidden” states, and u ∈ Rm is the control input. (In this work

we restrict our attention to situations where output measurements constitute partial state

information.) [1] Note that in many applications the most sensible description of the system

is in terms of the measured outputs as states, although rarely can we measure all the states

of the system.

We have seen that the state-space realization of a system completely determines struc-

ture. Nevertheless, this refined description of the structure is too detailed–it will be as hard

to recover from the transfer function as the state-space description itself. We would like

a notion of network structure at the resolution of our measurements, something that sup-

presses information about the hidden states but accurately captures the interaction structure

between measured states (internal structure) and the inputs and measured states (control

structure). We will now derive expressions for these structural representations.

Taking Laplace Transforms of the signals in (2.2), we find[
sY
sXh

]
=

[
A11 A12
A21 A22

][
Y
Xh

]
+
[

B1
B2

]
U (2.3)

Solving for Xh gives Xh = (sI−A22)
−1 A21Y +(sI−A22)

−1 B2U . Substituting into the first

equation of (2.3) then yields sY = WY +VU , where W = A11 + A12 (sI−A22)
−1 A21 and

V = A12 (sI−A22)
−1 B2 + B1. Let D be the matrix with the diagonal term of W , i.e. D =

diag(W11,W22, ...,Wpp). Then, (sI−D)Y = (W −D)Y +VU . Note that W −D is a matrix

with zeros on its diagonal, and that D is a diagonal matrix of proper rational functions. We

then have

Y = QY +PU (2.4)

where
Q = (sI−D)−1 (W −D) (2.5)

and
P = (sI−D)−1V (2.6)
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The matrix Q is a matrix of transfer functions from Yi to Yj, i 6= j, relating each measured

signal to all other measured signals (note that Q is zero on the diagonal). Likewise, P is

a matrix of transfer functions relating each input to each output without depending on any

additional measured state Yi.

G, as mentioned, is a matrix whose terms represent the effect of each input u j on each

output (measured state) yi. However, this does not distinguish direct or indirect relation-

ships, and each term includes interactions with many other states of the system, including

other measured states. On the other hand, Pi j denotes the direct impact of the jth input on

the ith output, where ‘direct’ is understood to mean exclusive of the other measured states.

The terms of P are strictly proper rational functions in s, as are the terms in G, but the

dynamics of P represent the action of some hidden states or that of the one corresponding

measured state, but never other measured states. This precipitates the following definition:

Definition 1. Given the system (2.2), we define the dynamical structure function of the

system to be (Q,P), where Q and P are the Internal Structure and Control Structure, re-

spectively, and given as in (2.5) and (2.6).

Some important properties that follow from this definition and the preceding discussion

include:

Lemma 1. The dynamical structure function (Q,P) of any system (2.2) exists and is unique.

It is related to the transfer function, G, of the system by

G = (I−Q)−1 P. (2.7)

Lemma 2. Consider the system (2.2) with p < n. The dynamical structure function (Q,P)

is invariant to changes of coordinates on the hidden states, zh = T xh with T invertible.

The change of coordinates yields a new system given by
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[
ẏ
żh

]
=

[
A11 A12T−1

TA21 TA22T−1

][
y
zh

]
+
[

B1
T B2

]
u

y =
[

I 0
][ y

zh

]
.

Construction of the dynamical structure function for this system reveals it to be precisely

that of the untransformed system (2.2).

In particular, the dynamical structure function is invariant to any change of coordinates

(and corresponding change of structure) only involving the hidden states, showing that this

information is suppressed in this description of the system.

The preceding two lemmas show that first, the dynamical structure function of a system

contains more information than the transfer function, and second, the state-space represen-

tation contains more information than the dynamical structure function. (see Figure 2.3)

Figure 2.3 Relation of dynamical structure to state-space and transfer function
representations of a network

2.2 Sparsity of internal structure

Real biological networks with large numbers of parameters are generally not highly con-

nected, rather having a ‘sparse’ connection topology with relatively few direct relations

among other observed states in the network [2]. It is of interest to learn how sparse a net-

work might be given input-output data. We examine necessary and sufficient conditions for
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a transfer function to have a realization with no direct relations among the hidden states.

We start by defining this in terms of dynamical structure.

Definition 2. A system is said to be completely decoupled if Q = 0.

We state a property of transfer function matrices, as given in [3], which we will use

often in proving the next few theorems:

Definition 3. The characteristic polynomial of a proper rational transfer function matrix

G is the least common divisor of the denominators of all minors of G. The degree of G, or

δ (G), is the degree of the characteristic polynomial of G.

(Recall that a minor of a matrix A is the determinant of some square submatrix of A.)

Theorem 1. A realization (A,B,C,D) of G is minimal if and only if dimA = δ (G).

The requirement that dimA = δ (G) is then equivalent to the condition that the realiza-

tion is both controllable and observable. Since we are only considering systems with form

shown in 2.2, we assume that D = 0 and C = [I 0], and refer to a system as (A,B).

For the remainder of the chapter, let Q and P be matrices of strictly proper rational

transfer functions, of size p× p and p×m respectively, where all diagonal terms of Q are

0. (We will call such a (Q,P) a dynamical structure pair.) Let D be a p× p diagonal matrix

of proper rational functions.

Lemma 3. Given Q, P, and D as above, with W = (sI−D)Q+D and V = (sI−D)P, there

exists a realization (A,B) satisfying

1. W = A11 +A12(sI−A22)−1A21

2. V = B1 +A12(sI−A22)−1B2

Proof. Since P and Q are strictly proper and D is proper, W and V are proper. Thus there

exists a realization of the transfer function
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[
W V

]
= D′+C′(sI−A′)−1B′ =

[
A11 B1

]
+A12(sI−A22)−1 [A21 B2

]
(2.8)

Let (A′,B′,C′,D′) be any realization of [W V ]. Then A′ = A22, B′ = [A21 B2], C′ = A12,

and D′ = [A11 B1].

We showed in Lemma 3 that for every D there exists a corresponding realization (A,B).

In the discussion after (2.3) we derive an admissible D from any system (A,B). As a result,

D parameterizes classes of systems (A,B) with fixed dynamical structure (Q,P).

Finding a realization that is minimal for a particular dynamical structure consists of

choosing a D (not necessarily unique) that will minimize the degree of the transfer function

matrix [WV ]. This may or may not be a minimal realization of G. We wish to obtain

conditions stating when a lowest-order realization of the decoupled dynamical structure

(0,G) is a minimal realization of G.

Lemma 4. Given a matrix D as described above, if all denominators of D are relatively

prime to all terms in P, the degree of the transfer function matrix (sI−D)P is equal to the

degree of H = [D (sI−D)P].

Proof. We will prove that the characteristic polynomials of H and (sI−D)P are equal,

by showing that the denominator of any minor of one matrix divides the characteristic

polynomial of the other. First, any minor of (sI−D)P is a minor of H, and so divides the

characteristic polynomial of H.

Now let us consider any r× r minor x of H. If all r columns of H come from columns

of (sI−D)P, x is a minor of (sI−D)P. Suppose that m < r columns come from columns

of (sI −D)P (meaning the other r−m columns are columns of D.) All columns of D

contain at most one nonzero term, so x is either 0 or the product of r−m terms of D and an

m×m minor x′ of (sI−D)P (or 1, if m = 0). Since the denominator of each term in D is

unique to its row, and is found in all terms in the corresponding row of (sI−D)P, each of
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the r−m denominators from D divide the characteristic polynomial of (sI−D)P and are

relatively prime to x′, which also divides the characteristic polynomial of (sI−D)P. Thus

their product, x, divides the characteristic polynomial of (sI−D)P.

We are now ready to find sufficient conditions on G for it to have a completely decou-

pled minimal realization.

Theorem 2 (Decoupled minimal realization). If each row of a p×m transfer function

matrix G contains an element with a pole that is unique in its column, then G has a minimal

realization whose dynamical structure is equal to (0,G). For a single-input system (m = 1),

the condition is necessary as well as sufficient.

Proof. (⇒) Denote by δ (G) the degree of G . Suppose each row in G has a pole which

is unique in its column; we’ll call them α1 ∈ C,α2 ∈ C, · · · ,αp ∈ C. We will construct a

diagonal transfer matrix D(s), by setting dii = s− pi(s)
qi(s)

, where pi(s) is the minimal real-

valued polynomial (of degree δi ∈ {1,2}) for αi and qi(s) is a polynomial of degree δi−1

with normalized leading coefficient, that shares no roots with other elements in G. (If αi is

real, this makes dii = αi.) D is a diagonal matrix of proper rational functions, as desired,

and (sI−D)ii = pi(s)
qi(s)

.

Multiplying P on the left by (sI−D) removes from the ith row δi poles unique to that

row of P, replacing them with δi− 1 poles which do not cancel and are unique to the ith

row of (sI−D)P. As a result, δ ((sI−D)P) = δ (P)− p. By Lemma 4, the degree of the

transfer function matrix (sI−D)P is equal to the degree of [D (sI−D)P]. It follows by

Lemma 3 that there exists a realization (A,B) of G where A22 is a (n− p)× (n− p) matrix,

which means that A is n×n. Thus (A,B) is a minimal realization of G where Q = 0.

(⇐) Suppose G is single-input (a column vector of transfer functions) and that some

element in G (without loss of the pth element) does not contain a unique pole. If there exists

a minimal realization A,B,C = [Ip 0] so that Q = 0, then A11 is diagonal, as is A12An
22A21
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for all values of n. It follows by induction that for any power Am of A, the submatrix Am
11

is also diagonal. We now consider the transfer function Ḡ consisting of the first p− 1

elements of G. Ḡ has the same degree as G, so the system A,B,C̄ is a minimal realization

of Ḡ. However, the pth column of C̄Ak is uniformly zero (since the first p− 1 elements

of the pth column of Ak are zero for all k, and C̄ = [Ip−1 0]) so the pth column of the

observability matrix is also uniformly zero. Since (A,B,C̄) is not observable, it is not a

minimal realization of Ḡ, a contradiction.

Theorem 2 characterizes a class of transfer functions which always have a decoupled

minimal realization. Let us illustrate this result with a few examples.

Example 1. Consider the dynamical structure

Q = 0;P = G1 =

[
1

s+1
2

s2+2

]
Following Lemma 3, choose D to give us a desired (sI−D):

D =
[
−1 0
0 −2

s

]
;(sI−D) =

[
s+1 0

0 s2+2
s

]
[
W V

]
=
[
D (sI−D)P

]
=
[
−1 0 1
0 −2

s
2
s

]
This transfer function has a minimal realization

(Ā, B̄,C̄, D̄) =
(

[0],
[
0 −1 1

]
,

[
0
2

]
,

[
−1 0 1
0 0 0

])
which gives us our minimal realization of (Q,P):

(A,B) =

−1 0 0
0 0 2
0 −1 0

 ,

1
0
1


This is also a minimal realization of G, which can be seen from Theorem ?? since

δ (G) = 3. This is consistent with Theorem 2 as all elements of G contain a unique pole in

their column.
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Example 2. The transfer function G2 =

 1
(s+1)2(s+2)

1
(s+1)(s+2)

 does not admit a completely de-

coupled minimal realization since neither row contains a unique pole in its column, thus

violating Theroem 2. We can see this as follows:

G2 has a minimal realization of form (A,B) = −1 1 0
0 −2 1
0 0 −1

 ,

0
0
1


All possible minimal realizations of G2 with desired form C can be found by performing

a change of coordinates on the hidden state xh, x∗h = T1y+T2xh, with T2 invertible: In this

case we set T1 = [t0 t1] and T2 = [t2], giving us

(Ā, B̄) =
 −1 1 0

− t0
t2

−2− t1
t2

1
t2

−t0− (t1−t2)t0
t2

t0−2t1− (t1−t2)t1
t2

t1−t2
t2

 ,

0
0
t2




From our equation for W, w12 never equals zero because a12 never equals zero. The

corresponding term of Q is also always nonzero. This means that for any minimal realiza-

tion of G2, x2 has a direct effect on x1.

The fact that any transfer function with a unique pole on every row admits a completely

decoupled realization implies that the existence of a completely decoupled minimal real-

ization for a transfer function is not all that special, since any transfer function is arbitrarily

close to one that does have a decoupled minimal realization. We show this in the following

theorem.

Theorem 3. Given the H∞ norm on the set G of strictly proper, rational, stable p×m

transfer functions, and any ε > 0, for each G ∈ G there exists a Ĝ ∈ G so that each row of

Ĝ has a pole that is unique in its column and ||Ĝ−G||< ε .



14 Chapter 2 Theory of Dynamical Structure Functions

Proof. For each i, select αi to be a pole in the ith row of G with minimal real-valued poly-

nomial pi(s). Choose γ to be the norm of the diagonal matrix with terms ( 1
p1(s)

, · · · , 1
pp(s)

).

Then let δ = ε

2γ‖G‖ and find δi ∈ (0,δ ) so that no zeroes of the polynomial pi(s)− δi

are zeros or roots of other elements in G, and δi
pi(s)−δi

is stable. Define the diagonal ma-

trix J where jii = pi(s)
pi(s)−δi

. Let Ĝ = JG. The norm of the diagonal matrix with terms

( 1
p1(s)−δ1

, · · · , 1
pp(s)−δp

) is less than 2γ , each row of Ĝ has as unique poles the zeroes of

pi(s)−δi and

‖Ĝ−G‖= ‖(J− I)G‖ ≤ ‖J− I‖‖G‖

< 2δγ‖G‖= ε



Chapter 3

Current Network Reconstruction

Methods

The dynamics governing a biological network are much more difficult to identify from data

than are the dynamics of simple systems such as a circuit board, or a weight on a spring.

There are several reasons for this. First, biological systems involve a large number of

different chemicals/substances, usually much larger than the number of chemicals whose

concentrations and behavior can be observed. Thus, any method to identify these systems

is very computationally intense and requires large amounts of data describing the system

[4]. Second, biochemical systems have fast reaction times and it is hard to obtain time-

series data with sufficiently frequent measurements to accurately portray system dynamics.

Finally, data obtained from biochemical networks is highly prone to noise [5]. This noise

stems from both the limited accuracy of measurements and the uniqueness of individual

cells or organisms with the same genetic structure and function. (For example, not all

liver cells have exactly the same number of ribosomes.) Challenges such as these make

the accurate reconstruction of genetic reaction networks very difficult, and finding ways to

more accurately describe the dynamics and structure of these networks is an active research

15



16 Chapter 3 Current Network Reconstruction Methods

topic.

The problem of accurately reconstructing gene regulatory networks attracts researchers

from many different academic and research fields, such as mathematics, computer science,

electrical engineering, and statistics. Each of these disciplines favors distinct approaches

for network reconstruction, and as a result, several different methods are commonly used

for identifying genetic regulatory networks. This chapter does not purport to be an ex-

haustive survey of the different methods used, but will briefly overview several approaches

from a few of the most common disciplines–Boolean networks, Bayesian methods, and

differential equations models.

3.1 Boolean methods

Boolean methods of network identification involve algorithms to determine qualitative rules

describing dependencies among the different states in a network. At every time step for

which data is available, each state is labeled to be either on and assigned a value of 1,

or off and assigned a value of 0 [6]. The effects on a given state by all other states are

modeled by finding the Boolean rule that best describes the input-output data. For ex-

ample, if state x1 is on at a given time state whenever states x1, x2, and x3 are off in

the previous time state, an algorithm should determine that the Boolean relation for x1

is x1(t +1) = NOT{x1(t),x2(t),x3(t)} (see Figure 3.1). To be able to fully determine each

Boolean relation (there are 2k possible Boolean relations describing the effect on a state of

k distinct states), the algorithm needs to consider data sets with as many variations of states

‘on’ or ‘off’ as possible.

Probabilistic Boolean networks [7] are an extension of Boolean networks in which a

node can have more than one different Boolean rule assigned, with each of the rules car-

rying a probability of being the expressed rule at any time step. These networks can be
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Figure 3.1 Two Boolean networks: the Boolean relation for (i) is xa(t + 1) =
NOT xb(t),xb(t + 1) = NOT xa(t). Each species degrades the other. The Boolean
relation for (ii) is xa(t +1) = xb(t)ORxc(t),xb(t +1) = xa(t)NORxc(t),xc(t +1) =
xa(t)ANDxb(t). In other words, xa is produced when one of the other two are
present, xb is produced when none of the other two are present, and xc is produced
when both xa and xb are present.

represented as Markov chains.

One strong point of Boolean networks in discovering structural relationships between

genes is their ability to predict direction of causality. Some methods are only able to de-

termine whether a relationship exists between two states, but the Boolean rules that iden-

tify a network clearly express which variable influences and which is influenced [7]. Re-

searchers have used Boolean methods to successfully determine qualitative relationships

among genes in the development of Drosophila, among other organisms. Boolean net-

works are also computationally easy to determine from data. Boolean methods have the

weakness that they cannot determine relative strengths of Boolean rules on different states,

and do not easily allow for variance of the rules with reaction parameters. Generalized

formalisms of Boolean networks do exist; for example, replacing the two discretized states

ON and OFF with n > 2 states ranging from 0 (‘off’) to n−1 (‘fully on’). This allows for

intermediate levels of expression and thus gives a better prediction of dynamics, although

its utility is tempered by a sharp rise in computational and mathematical complexity [6].
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3.2 Bayesian networks

Some algorithms rely on heavy use of probability laws and sometimes information theory

[8] to reconstruct a gene regulatory network (GRN), by finding a data set’s best probable fit

within a family of possible models. These methods make heavy use of Bayes’ law, which

relates the conditional likelihood of an event X (given knowledge of an event Y ) to the

likelihoods of X , Y , and Y given X :

P(X |Y ) =
P(X)P(Y |X)

P(Y )

In other words, knowing whether statement Y is true may affect our prediction of

whether statement X is true, depending on the conditional probability P(Y |X).

Since static Bayesian networks are required to be acyclic, they are unable to success-

fully reverse engineer gene regulatory networks, as almost all interesting GRNs contain

some feedback loops. Dynamic Bayesian networks assign a node to each species at each

discrete time-step. In this context a feedback loop is not cyclic because all directed edges

from nodes at one time step lead to nodes at later time steps. According to the author of [9],

this does not unbearably increase the system complexity since the relationships among

nodes are then assumed to be time-variant. Dynamic Bayesian methods can also reveal

a little more information about network dynamics (as opposed to just network structure).

Examples of regular and Dynamic Bayesian networks are illustrated in Figure 3.2.

Friedman et al. [10] describe a commonly-used procedure involving Bayesian methods.

Their method compares different species in the network and calculates the probabilities,

by use of Bayes’ rule, that any two states are coexpressed. The procedure then searches

through a family of different candidate networks, looking for the ones that best fit the

probabilities and are thus most likely to have generated the observations. One challenge

the authors mentioned in this paper was distinguishing regulation of one gene by another

as opposed to non-causal coexpression of the two genes.
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Figure 3.2 The network in (a) is an example of a Bayesian network: a directed
acyclic graph. (b) is not a Bayesian network because it contains a cycle. Dynamic
Bayesian Networks (c) account for feedback loops by assigning each species a
node at each time step.

Besides this particular approach, other algorithms exist that rely on probability dis-

tributions. Some methods are modifications to the typical Dynamic Bayesian approach,

such as [11], which builds a network one gene at a time instead of searching over com-

plete networks. This method rates species that might affect a certain state one at a time

instead of using a cumulative distribution function. Others, such as the ARCANe algo-

rithm [12], incorporate the concept of mutual information. ARCANe identifies groups of

genes with high mutual information and labels those groups as being possibly correlated.

The algorithm then applies the Data Processing Inequality to identify which correlations

are direct relationships and which are not. ARCANe is interesting in that it does not neces-

sarily require data from perturbation experiments, as long as the data contains considerable

”phenotypic variations of a given cell type.” [12] Other related methods, such as Hidden

Markov Models or Markov chain Monte Carlo methods (MCMC), are considered by the

community to be special cases of Bayesian models [9].

One advantage Bayesian networks and mutual information methods share is the ability

to incorporate almost any information available about a network. Conditional probabilities
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can be obtained not only from expression data, but also sources such as previous knowl-

edge of the properties of different reactants and known relationships among species in

similar networks [9]. Probability rules can have varying confidence levels, according to

the type and accuracy of information on which they are based. The authors of [13] scored

the accuracy of probability rules inferred by different types of experiments, such as gene

expression versus protein-interaction. They were then able to weight the confidence level

of these probability rules in their identification of some yeast pathways.

Methods using Bayesian networks can be very computationally intense (and are NP-

hard [14]), especially given the need to calculate large numbers of probabilities and apply

them to a very large search space of possible models. For example, knowing that a network

is a directed acyclic graph and contains 10 nodes gives a search space on the order of 1018

possible models [5]. Calculating fits of different probabilities can be quite unwieldy for

such a large search space, and different methods exist to reduce this search space.

3.3 Differential equation methods

Unless some of the species in a network are present in very small quantities (such as certain

enzymes or nucleic acids in a cell), their respective concentrations over time can be repre-

sented fairly accurately as continuous functions. The rate of change in concentrations can

then be related to the current concentration levels through a series of ordinary differential

equations.

Besides relatively high concentrations, the use of differential equations to model a gene

regulatory network makes several other assumptions: namely, that the reaction rates are

slow compared to the rates of diffusion (‘mixing’) of a chemical. These mixing rates are

usually slower for chemicals in a cell than for chemicals in a test tube, due to biochemical

properties such as low diffusion rates across membranes [15].
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Various approaches exist for finding a good-fit differential equation. One method [16]

infers, for each concentration xi, its likely activators and inhibitors, and takes that data into

account in deciding the typical chemical kinetics of xi based on the other states that af-

fect it–such as self-degradation/autocatalytic production, dimerization, Michaelis-Menton

kinetics, and other simple ’motifs’ (common structures in chemical reaction networks).

The inferred kinetic information is used to formulate an equation approximating dxi
dt . An

example of such an inferred equation might be

dx1

dt
= Vi

(
1+

x2

x2
2 +θ1,2

)(
1+

x3

x2
3 +θ1,3

)(
1+

θ1,4

x4 +θ1,4

)
−λ1x1

where Vi is the transcription rate of xi, θ1,2, θ1,3, and θ1,4 are constants relating to activation

or inhibition of transcription by x2, x3, and x4, and λ1 is the degradation rate of x1. If the

equation for dxi
dt is known to have this form, solving for the equation reduces to finding the

values for the five constants which best fit the data. However, finding the correct equation

form requires knowledge of how x2, x3, and x4 affect x1. With many different chemicals in-

volved in a network, the conjectured equation form can unintentionally disregard important

reactions.

Other researchers [17] approach the reconstruction problem by assuming the network

concentrations over time are given by a system of nonlinear differential equations

dx
dt

= f(x,p)

without specifying the structure of f. x is the vector of the concentrations (or activity levels)

of the different states, and p is a vector of other parameters relevant to the reaction, such as

temperature, pH, rate, or other kinetic constants. Involving the terms in p as independent

variables of the equation model makes the model robust to changes in system dynamics or

structure which can result from changes to the kinetic parameters (some parameters, such

as rate constants, don’t change.) The goal of setting the equation up in this manner is not

to completely determine the equations of f, but rather to identify the terms of the Jacobian
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of f, F = {∂ fi/∂x j}. A nonzero term Fi j represents an effect on xi caused by x j. The size

of the value Fi j represents the scale of that effect, negative terms represent degradation or

inhibition, and positive terms represent production or activation.

In [17], the terms of the Jacobian are found by making perturbations to certain of the

parameters p j–for example, increasing temperature or pH of the solution. Data obtained

from time-series data of the system with and without each perturbation is used in determin-

ing the best fit for the terms in F , and is compared again at a number of time steps to make

sure it is robust against noise. (Steady-state data can also be used, but requires performing

more experiments and perturbations.)

Other methods for system identification also use linearizations of the network. Working

with a linear system greatly reduces computational complexity. [18] describes a method

for reconstructing a nine-gene subsequence of the SOS pathway in E. coli. The authors

approximate this network with a linear system

dx
dt

= Ax+u

where A is an n× n coefficient matrix (similar to F previously) and u is an input vector

representing perturbations made to the system. Using the assumption that all n states in the

system are observed and that each state xi in the system has fewer than k < n connections,

the authors searched for the best fit of A to the data sets (x,u). The authors optimized the

network over choices of k to find a system that minimized false positives and was both

consistent with the data and dynamically stable.

Recently, the authors of [14] developed a newer approach to network reconstruction

from time-series data using a linear matrix inequality (LMI) algorithm and regression anal-

ysis to best fit the model to a piecewise affine (PWA) system. Piecewise affine systems offer

much of the simplicity of linear systems, but are also able to incorporate more complicated

dynamics such as multiple equilibrium points. This algorithm, as do many of the others
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I have discussed in this chapter, exploits the suspected scale-free topology of biological

networks–that is, that the majority of states in a system have relatively few connections to

other states, while some states have very high numbers of connections (the number of con-

nections for each state roughly follows a power-law distribution.) The authors tested their

method on a number of 10-state sample networks, and favorably compared their results to

those obtained through a method incorporating Dynamic Bayesian Networks.

One way of reducing computational complexity in fitting models using differential

equations methods is by model order reduction. The authors of [14] mention that large

sets of genes will often have similar expression patterns, meaning their states can be clus-

tered into one state, This reduces the model order by eliminating variables redundant to the

system dynamics. Bamieh and Giarré in [19] show a successful example of model order

reduction, a three-state approximation of a ten-state model of protein levels in Drosophila.

The approximation exhibits kinetic behavior very similar to the originial network.

A number of other approaches to model biological networks with systems of differential

equations exist, each using different methods to optimize the coefficients or structure of the

network. One of these is a procedure by [2] where the 1-norm of the reaction rates is

minimized.

As with Bayesian methods, algorithms incorporating differential equations have their

strengths and limitations. If a certain chemical in a network is present in very small quan-

tities, that chemical’s concentration is not well represented by a continuous function. Al-

ternative methods, such as stochastic equations, are necessary to more accurately model

network behavior. Networks where chemicals have slow diffusion or mixing rates with

respect to reaction rates require spatial as well as temporal dynamics (partial differential

equations) to yield an accurate model. Furthermore, useful data for such approaches is

usually limited to expression (time-series or steady-state) data and knowledge of the me-

chanics of involved chemical reactions. Additional information about a system, if it cannot
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be well-quantified or modeled in the differential equations (such as the shape or molecular

weight of a chemical), cannot really be used in a differential equation model. A Bayesian

analysis can sometimes use such information to construct a probability assignment.

Advantages found in using systems of differential equations for describing biological

networks include knowledge of system dynamics, not just structure. Questions about di-

rection of causality common in Bayesian methods are resolved in differential equations

models.

3.4 Why so many different approaches?

There are several reasons that no one superior method is universally accepted for deter-

mining the structure of a gene regulatory network from data. First, data sets for a regula-

tory network can vary greatly in both the quantity, accuracy, and type of data they contain.

Sometimes, the data collected comes from a series of steady-state perturbations made to the

network–concentration of one chemical is increased or decreased by a measured amount,

and the system reacts to this change from the steady-state until the concentration stabi-

lizes. The data only gives the initial and final concentrations, with no information about the

dynamics of the reaction. Other measurements yield time-series data on a system, which

provide information about the concentrations of the states in a network at a series of time

intervals. This data can give a better idea of the dynamics of a network, but is harder to

obtain, especially when short time intervals are required [2].

Also, due to network structure and scale, some methods of network identification are in-

applicable in certain situations. For example, as discussed before, differential equations do

not accurately model the dynamics of chemicals with very small concentrations. Discrete

stochastic simulation can more effectively model such networks [20] [21].

Finally, as mentioned previously, scientists with different research and educational
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backgrounds have their own biases and previous knowledge about certain methods. Sys-

tems biology is an emerging field, and research in this area draws professionals in the areas

of statistics, mathematics, chemical and electrical engineering, and computer science. Each

field brings a different set of computational tools and methods. For example, most systems

biologists who favor Bayesian methods [10] are computer scientists by training, while pro-

ponents of differential equations or regulation matrix methods are usually mathematicians

or engineers [14]. A researcher highly expert in network reconstruction by one method

might be negatively disposed toward using a new method with which he was relatively

unfamiliar.

Among methods that only purport to find network structure–not dynamics–the com-

monly accepted metric of accuracy is the number of false negatives and false positives.

Metrics involving network dynamics, however, differ according to author and discipline

and are harder to compare. Furthermore, researchers comparing different methods are usu-

ally less familiar with other methods than their own, and do not always implement the

other methods correctly. An example of this is seen in a paper comparing performance of

the ARCANe algorithm to a Bayesian network method [12]. The authors compared the

performance of their algorithm and the Bayesian algorithm on a synthetic network, and

found their own to be more accurate. It was later pointed out in [22] that the authors used a

static instead of dynamic Bayesian network; that author showed that the dynamic Bayesian

method was in fact more accurate than the ARCANe method. As a result, a large-scale

comparison of the predictive accuracy of different methods in identifying networks is lack-

ing, although an paper will often describe an analysis of some sample network on which the

described method favorably compares to one or two other methods [16] [12] [14] [18] [10].
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Chapter 4

Using Dynamical Structure Functions to

Reconstruct Genetic Networks

As stated in chapter 2, knowledge of a network’s dynamical structure is knowledge of not

only network topology (presence or absence of connections) but also system dynamics

(whether a connection produces an activating or inhibitory effect, and the strength of that

effect.) Since a given transfer function admits any internal structure, input-output data,

which gives us a transfer function, is not enough information to deduce a system’s dynam-

ical structure. From [1] we know what information, in addition to input-output data, is

necessary to obtain a system’s dynamical structure:

Lemma 5. Consider a system of form (2.2) and assume that the only available information

on the system is its associated transfer function G, which does not have any rows or columns

that are entirely zero. The dynamical structure can be reconstructed if and only if at least

p2− p transfer functions of Q or P are known.

To accurately predict network structure, data sets that observe changes made in the

structure (altering the network in some way) are preferable to data exploring diverse dy-

namical responses of an unaltered network, even if the data is time-series instead of steady-
27
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state [16]. We introduce a method that uses well-defined network alterations, analogous to

commonly performed biological experiments, which affect network structure in a way that

we can quantify and exploit to ascertain the network’s dynamical structure.

4.1 Silencing and overexpression

Gene silencing and gene overexpression are two types of experiments readily available to

biologists that make modifications to the structure of a biological system. Overexpression

of a gene may be constitutive or inducible, through introduction of a transgene into the host

which is specifically designed to increase the abundance of the desired transcript. RNA

silencing involves down-regulation of one or more genes, via mutation or inhibition. The

target specificity of these methods allows the control of gene expression, without directly

affecting other genes in the network. Putting these modifications in terms of a general

network, overexpression of a state makes the effects of other states on the overexpressed

state negligible, while preserving the effects of the overexpressed state on others. Silencing

removes a state from the reaction entirely. These experiments can affect the system slightly

or severely depending on the state to be modified (Figure 4.1).

We model both modifications with an operator that adds an additional state variable

and input to the system. For state silencing, the additional state represents a silencing RNA

targeted to temporarily drive a particular measured state to zero. Inducible overexpression

uses a chemical to activate the inserted transgene, temporarily driving the concentration of a

particular measured state to a large value. For an LTI system with partial state observation,

our modification can be represented as follows:
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Figure 4.1 A sample network (i) with four observed states and one input, and the
resulting network when x2 is silenced (ii) or overexpressed (iii)

 ẏ
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ż

 =

 A11 A12 βiδi
A21 A22 0
0 0 −αi

 y
xh
z

+

 B1 0
B2 0
0 1

[ u
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]
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xh
z

 (4.1)

In both silencing and overexpression, α is the coefficient for the self degradation of our

added state so always takes a positive value. β is positive for overexpression and negative

for gene silencing. The magnitude of β is set to be much greater than α , as we want to

either quickly drive the concentration of state i to zero or rapidly induce a strong increase

in the concentration.

The dynamical structure of the modified system 4.1 is equal to the dynamical structure

for the original system (A,B), since this system represents the change in expression of xi.

When the system reaches its new steady state, the dynamics of the system change. [23]

suggests that the modified system can be rewritten as
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where Ā is A with the terms in the ith column (silencing only) and the ith row (both

overexpression and silencing) set to zero. It follows directly from Equations 2.4, 2.5, and

2.6 of Section 2.1 that Q for the modified system is equal to Q for the original system,

except for the ith row (for overexpression) or the ith row and the ith column (for silencing).

This observation seems reasonable and consistent with our descriptions of overexpression

and gene silencing, and is fantastic news because each different overexpression or silencing

experiment we perform reveals more information about the terms of Q and P.

Lemma 6. For any linear system (A,B), the internal structure of the system representing

silencing of the ith state of (A,B) is equal to the internal structure of the original system,

except for the terms on the ith row and column which are zero. The internal structure of

the system representing overexpression of the ith state of (A,B) is equal to the internal

structure of the original system, except for the terms on the ith row which are zero.

Proof. This follows from the modifications made above, as well as Equations 2.5 and 2.6.

Theorem 4. The structure for any LTI system can be completely determined by performing

p overexpression or silencing experiments, one for each observed state in the network.

Proof. Suppose our original system is (A,B) with transfer function G. Call our modi-

fied systems (A1,B1),(A2,B2), · · · ,(Ap,Bp) with transfer functions G1,G2, · · · ,Gp and dy-

namical structures (Q1,P1), · · · ,(Qp,Pp). The matrix equations (I −Qi)Gi = Pi give us

(p−1)m equations relating the p + m−1 unknowns qi1, · · · ,qip, pi1, · · · , pim. (Recall that
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qii = 0). Also considering the equation (I−Q)G = P given by the original system, we have

(p−1)m+1 equations, which is more than p+m−1 for any values of p > 1,m≥ 1.

4.2 Discussion of algorithm

An algorithm for determining the dynamical structure of single input systems is currently

being implemented in MATLAB. The algorithm takes expression data from an original

system and modified systems (each of the p states is silenced individually), and estimates

the transfer function of each system using methods in the System Identification toolbox.

The algorithm then solves for the correct dynamical structure (Q,P). Our algorithm has

been tested on some small sample networks with promising results, and is currently being

generalized to handle overexpression profiles and arbitrary system order.



32 Chapter 4 Using Dynamical Structure Functions to Reconstruct Genetic Networks



Chapter 5

Conclusion

We have shown in this work a construction to derive, for any dynamical structure pair

(Q,P), a linear system (A,B) whose dynamical structure is (Q,P). We have also found

conditions on a transfer function G for the existence of a completely decoupled minimal

realization, and shown as a consequence that any strictly proper transfer function is arbi-

trarily close to one for which a decoupled minimal realization exists.

This paper also examined several common approaches to identifying gene regulatory

networks (structure and/or dynamics) from gene expression data, and explored a new re-

construction method utilizing the theoretical properties of dynamical structure.

5.1 Future work

In Section 2.2 we mentioned that finding a realization minimal for a particular dynamical

structure means finding the correct D. Deriving this D for an arbitrary dynamical structure

is an interesting problem, because it will yield us conditions for the existence of a minimal

realization of G with any compatible dynamical structure.

We will also generalize Theorem 4 to define exactly which combinations of overexpres-

33
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sion and silencing experiments are sufficient to obtain dynamical structure. For example,

if it is not possible to perturb a particular state xi, we can still obtain structure by per-

forming more than p equations on the observed states (some states will be silenced in one

experiment and overexpressed in another.)

Section 3.4 discussed the lack of unbiased, direct comparison of reconstruction tech-

niques. A study is currently underway comparing a reconstruction method based on dy-

namical structure to some of the methods discussed above, including the sparsity method

set forth in [2], the Linear Matrix Inequality method in [14], and a Monte Carlo Markov

chain approach. Each algorithm will reconstruct a series of synthetic networks from ‘ex-

pression’ data, and the predictive accuracy of each method will be scored and compared.
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