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Chapter 1

Introduction

Multipurpose batch manufacturing systems (BMS) are used by various industries to produce

different products using the same factory infrastructure. These systems are typically modeled as a

sequence of processes necessary to manufacture the desired products. Optimally scheduling factory

resources to deliver a specified suite of products turns out to be a hard problem. Nevertheless,

understanding this problem is necessary to quantify the capacity, and hence the profitability, of the

manufacturing system.

We develop a novel approximation method that simplifies the BMS to a single machine with

sequence dependent setup costs. This problem is known to be similar to the Traveling Salesperson

Problem (TSP). We propose an integer programming formulation to then solve this simpler problem.

The reduction approximates a large optimization problem with a significantly smaller problem.

This allows for a sub-optimal solution to the actual problem by offering a tractable computational

approach.
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Chapter 2

Literature Review

This chapter needs to be enlarged considerably.

Early work simplified the problem by considering the scheduling of a single machine [3], [7]

and [8]. This problem naturally generalizes to the flexible job shop which processes several different

jobs with different routes and allows for multiple machines at any workstation. The BMS considered

in this paper differs from the job shop in that in a job shop, a job needs processing only on a single

machine in a workstation: workstations are not allowed to have different capacities. Nevertheless,

this is a property of batch manufacturing. A graphical solution to the general multipurpose batch

plant is given in [10] which works well for simple examples. However, when there are machines

of drastically different sizes or complex recipes, the problem grows to an intractable size. Others

such as [9] and [6] use a graphical representation of a multipurpose batch plant to derive a mixed

integer linear program (MILP) formulation to determine the exact answer to solve several objectives.

However, since these methods are exact, they are also computationally intractable for a complex

manufacturing system. Two heuristic methods of solution to the minimum makespan problem are

given in [1], the better of the two reduces decision variables in the MILP by a linear factor. Although

this does allow for the solution of much more complex problems, it is still difficult to compute the

makespan for a manufacturing system containing a workstation with a much larger capacity or longer

processing time than another workstation.
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Chapter 3

Max-Plus Algebra

We will briefly discuss the max-plus algebra as it is presented in [5]. The max-plus algebra

is defined over Rmax = R ∪ −∞. We will define three operations for scalars:

∀a, b ∈ Rmax

a⊕ b = max(a, b)

a⊗ b = a + b

a® b = a− b.

The zero element is defined as ε = −∞, and the unit element is defined as e = 0.

Matrix arithmetic is also defined. For matrices, A,B ∈ Rnl
max, C ∈ Rlm

max these are defined

as:
[A⊕B]ij = aij ⊕ bij

[B ⊗ C]ik =
l⊕

j=1

bij ⊗ cjk.

The zero vector and the unit vector are given by

ε =




ε

...

ε




e =




e

...

e




.
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The identity matrix is

I =




e ε . . . ε

ε e . . . ε

...

ε ε . . . e




.

We can now define a linear state-space system in the max-plus algebra. For x(k) ∈ Rn
max,

and A ∈ Rn×n
max, there is a linear autonomous system,

x(k + 1) = A⊗ x(k).

Definition 3.0.1 We say a max-plus autonomous system is stable if

∀i∃v ∈ R lim
k→∞

xi(k)® x1(k) = v.

Throughout this paper we will use the convention that for any y ∈ Rmax, the indeterminate

form y ⊕ (ε® ε) = y.

We will also define the 1-norm in the max-plus algebra.

Definition 3.0.2 The 1-norm of a max-plus vector, b ∈ Rn
max is

||b||1 =
n⊕

i=1

bi = eT ⊗ b

This norm induces a norm on a matrix.

Definition 3.0.3 The 1-induced norm of an operator A ∈ Rn×m
max is

||A||1 = maxx(||A⊗ x||1 ® ||x||1).

Theorem 3.0.1 Given a matrix A ∈ Rn×m
max , the max-plus 1-induced norm of A is

||A||1 = max
ij

aij .
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Proof: Let A be given. Without loss of generality, we will say that ||x||1 = e. Note that

||A⊗ x||1 = eT ⊗A⊗ x. The vector vT = eT ⊗A is the vector containing the max element of each

column of A. Therefore, we want to maximize vT ⊗ x. Because ||x||1 = e, the largest element in x

is e. Clearly, to maximize vT ⊗ x, we want to make x as large as possible; this means we set x = e

which gives vT ⊗ x = maxijaij .

Theorem 3.0.2 Given a matrix A ∈ Rn×m
max ,

min
x
||A⊗ x||1 ® ||x||1 = min

i
[eT ⊗A]i.

Proof: Let A be given. As in the previous proof we will say that ||x||1 = e and consider vT ⊗x.

Now we want to minimize vT ⊗ x, so we want x as small as possible. However, having ||x||1 = e

requires at least one element of x equal to e. Thus, we need only consider each ei where ei,i = e

and ei,j = ε for j 6= i. So the minimum vT ⊗ x is mini(vT ⊗ ei) = mini(vi) = mini[eT ⊗A]i.
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Chapter 4

Problem Description

4.1 Notation and Definitions

The fundamental processing unit in our manufacturing system is the machine. A machine is a

resource that performs a specific job in processing various products. Common examples include

mixers, extrusion presses, air dryers, heaters, etc. Note that the resource represented by a machine

has different characteristics depending on the product it is being used to produce. For example, when

manufacturing one product, a boiler may only process 5 kgs of material for 1 hour. Nevertheless,

while manufacturing another product, the same boiler may process 10 kgs for 24 hours. Thus, the

availability of the resource represented by a single boiler may be very different depending on the

product to which it is assigned.

A manufacturing system, or factory, then, is a finite set of machines F = {M1,M2, ..., Mn}.
Because a factory often has multiple machines that perform the same job, we partition this set into

a set of workstations, {W1,W2, ..., Wp}, where p ≤ n. The set of workstations characterizing a given

manufacturing system define the factory’s functional capabilities, while the machines assigned to

each workstation indicate the amount of that particular resource available at the factory.

Any particular manufacturing system represents a collection of resources that are capable

of producing a set of products P = {P1, P2, ..., Pm}. Each product is characterized by a recipe that

defines a sequence of resources that are required to manufacture the product. Specifically, the recipe

for product i is a triple Ri = {Si, Bi, Ti}, where Si is a sequence of oi workstations, indicating the

sequence of processing steps needed to create the product i; Bi is a sequence of oi vectors, where

the jth entry of the kth vector is a rational number, b, that indicates the batch size of product i

on machine j of workstation Si(k) during production step k of product i; and Ti is a sequence of

oi vectors, where the jth entry of the kth vector is a real number, τ , indicating the amount of time

machine j of workstation Si(k) would be occupied during production step k of product i. Thus,

the manufacture of product i may require a sequence of processing steps that revisits the same
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workstation multiple times, leading to a total number of processing steps oi that is larger than the

total number of workstations at the factory. Moreover, this sequence of processing steps may skip

other workstations altogether. Likewise, note that not only may the batch sizes and processing times

of the same machine be different when processing different products, but they may also change from

one processing step to another in the manufacture of a single product if the recipe recirculates to

the machine multiple times.

4.2 Operational Constraints

There are three constraints that characterize the particular class of manufacturing systems that

we consider here. These constraints are hard constraints, imposed by either the production process

itself, or by management to satisfy some competing objectives such as safety requirements, regulatory

standards, etc. These are:

1. A machine must be loaded to capacity before it is allowed to run. As a result, the recipes of the

products are determined such that a machine’s capacity is a rational multiple of the previous

machine’s capacity. There can be many reasons for this kind of constraint, including that the

partially processed product will not develop correctly except as a full batch, that polluting

emissions become unacceptable if partial batches are processed, etc.

2. We only consider the no intermediate storage (NIS) queuing policy. Thus any machine must

wait for the next machine to be available before it can unload any processed product. This

constraint complicates the analysis of the factory since buffers between stages of production are

removed, thus tightly connecting the behavior from one machine to the next. Nevertheless, this

constraint is also fundamental to various manufacturing systems. For example, a ”hot ingot”

system requires processing to occur immediately, and a waiting period or inter-processing

queue would drastically affect the production process. Likewise, safety regulations may prevent

any kind of stockpiling certain combustible materials between processing steps, thus forcing

machines to hold their product until the next workstation in the production sequence becomes

available.

3. No preemption is allowed, meaning that once a product has begun processing, it must run to

completion. This is consistent with the NIS queuing policy, as any preempted material would

have no storage and would have to be discarded.
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4.3 Simplifying Assumptions

In addition to operational constraints that narrow the scope of the manufacturing systems we con-

sider, we also impose some simplifying assumptions that facilitate our analysis and make exposition

more clear. Unlike the operational constraints, however, these assumptions are not essential to

problem definition nor or they critical to our results. In particular, our assumptions are:

1. All recipes end their production sequence at the same workstation. This assumption is made

without a loss of generality since we can always augment any recipe to include a ”final”

workstation, such as storage of the final product.

2. All machines in the same workstation are identical. This assumption simplifies notation and

the data structures used to store recipe information, but it is not essential. Note in particular

that some machines in the workstation may process one product while the others work on an

entirely different product.

3. The only schedules considered are permutation schedules. Thus, once a decision has been

made to manufacture a sequence of products, resources are assigned to the processing of those

products in the same order as they were scheduled. Note that this assumption is, in many

cases, restrictive since parallel machines at workstations could allow one product to be held

dormant while another ”passes” it in the production sequence. Nevertheless, we impose this

assumption in this work and leave its relaxation for future research.

4. The factory works as designed. That is to say, machines are reliable and do not break down,

nor does their performance in processing products deteriorate over time. The recipes, then,

will produce exactly the desired products, and no quality control is needed to tune recipes

or adapt to machine failure, etc. Clearly our results can be extended to consider stochastic

models of failure rates or time variation of production processes, but this is left for future

work.

From these assumptions, we can then develop some specialized definitions that are mean-

ingful for discussing this particular class of production environments. In particular, given no inter-

mediate queues and our restriction to permutation schedules, a decision to process product i begins

with loading relevant materials into the machines at the first workstation of product i’s recipe.

From there, these materials will pass from workstation to workstation as defined by the recipe until

product i is processed on the final workstation. Nevertheless, since each workstation operates on a

possibly different batch size of materials, and since the workstations operate only when full, it may
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be the case that many batches of product i must be processed in tandem before some machine in

the production sequence is filled and can begin processing. Thus, the concept of a load for each

product becomes meaningful. A load of a product is the minimum amount of material required to

complete processing of that product in the factory. A load will always be an integer multiple of

the largest batch size of any machine used in the production sequence. Note that the permutation

schedule assumption and the no-preemption constraint imply that loads can not be interrupted; all

operational decisions of the factory boil down to scheduling a sequence of loads of various products,

which we write as u = {u(0), u(1), ...}, where u(k) ∈ P = {P1, P2, ..., Pm} and means that the kth

load processed by the factory will be a load of product u(k − 1).

Another useful concept is the notion of product dominance of the factory; a product is said

to be dominating the factory while the final workstation is processing its load. A product’s runtime

at load or step k, r(k), is the amount of time that that load dominates the factory when processed

at step k. Finally, the idle time of transition k, ∆(k), is the idle time of the final workstation once

the k − 1 load of any product leaves the machine until the kth load enters the machine and begins

dominating the factory.

Moreover, under the assumption that all the machines in the same workstation are identical,

we can consolidate the recipe information for the entire production set P in three m×omax matrices,

where omax is the length of the longest production sequence over all products. Note that this

assumption implies that the vector sequences Bi(k) and Ti(k), where k is the processing step, can

be replaced by sequences of numbers bi(k) and τi(k), since a distinction between different machines

at the same workstation is no longer meaningful. We define the ith row of the first matrix, Ow, to

be the workstation sequence Si, appended with zeros to match the length of the longest sequence.

Likewise, let the ith row of the matrices Ob and Oτ be the batch sequence bi and the time sequence

τi, each appended with zeros as necessary. Thus, the collection of recipes for all products supported

by the specific manufacturing system define the factory’s admissible operations O = {Ow, Ob, Oτ}.
Equipped with these definitions, we can now formulate the problem and develop its solution.

4.4 Problem Formulation

This general framework sets the stage for our analysis of manufacturing systems. The focus of the

analysis is on the interaction between the factory resources (machines grouped into workstations)

and products (characterized by recipes). In particular, we are interested in the production capacity

of the factory, and the optimal schedule realizing this maximal throughput.
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The flexibility of the manufacturing system, however, to produce multiple products sug-

gests that throughput alone is not sufficient to meaningfully answer the capacity question. Clearly

throughput may change drastically depending on which product is being produced, so the capacity

question is meaningful only with respect to a particular quota. Let q =
[

q1 q2 ... qm

]T

, where

qi is an integer number of loads of product i ∈ P be the desired quota of each of the m products

manufactured by the factory. The schedule to maximize throughput then becomes the same schedule

to minimize the amount of time required to produce q. Note that the total number of manufacturing

loads is K = |q|1, which also defines the total length of the scheduling sequence u(k), 0 ≤ k ≤ K−1.

We say u is an admissible schedule if the total number of loads scheduled for product i equals qi.

Given the constraints and assumptions imposed on the manufacturing system, it is clear

that a given finite production sequence u(k) will generate an output sequence in the same order.

What is not clear is the completion time of this final output sequence. Let y(k) = ∆(k) + r(k) be

the work time of the final workstation associated with load k. The total completion time is then

simply
∑K−1

i=0 y(k).

We observe that the factory can be thought of as a complex dynamic system mapping u(k)

to y(k). The state of the system at stage k is a vector z ∈ Rn, where zi(k) is the amount of time

from when load k enters the first workstation in its recipe until machine i completes all processing

associated with load k. The initial state of the factory, z(0), thus indicates the times when factory

resources (machines) become available for processing the first load u(0). The action of a production

schedule u(k) on the factory then becomes

z(k + 1) = f(z(k), u(k))

y(k) = g(z(k), u(k))
(4.1)

for some complex functions f and g. We thus have the problem: given a factory, a production set

P with their associated recipes R, and a quota q, find an admissible schedule u such that

min
u

K−1∑

k=0

y(k)

subject to z(k + 1) = f(z(k), u(k))

y(k) = g(z(k), u(k)).

(4.2)

Note that the complexity of f and g make it very difficult to determine an optimal schedule

u, even when it may not be terribly difficult to simulate (f, g) given a particular candidate schedule.
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We capitalize on this fact to develop a discrete event realization of (f, g) in the next section. This

is then followed by an approximation method that samples the simulation to characterize certain

transition costs, yielding an integer program to compute a suboptimal schedule, approximating a

solution to (4.2).
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Chapter 5

Simulation of the Factory

In order to simulate the factory, we model it as a discrete event system. Initially each

machine can be viewed as a finite-state automata with a set of states Θ containing three states:

loading (θl), running (θr), and unloading (θu). These states can be defined in terms of the portion

of a full batch the machine contains, ` ∈ [0, 1], and the time the machine has been running, T ∈ Z∗.
The current state, θ is defined as follows:

θ =





θl when ` ≤ 1 T = 0

θr when ` = 1 T < τ

θu when T ≥ τ.

Assume a factory with n machines that can manufacture m different products. In order to

model the factory as a dynamic system, let the state of a machine be defined by [` T π o]′, where `

and T are defined as before, π ∈ N is the current product in the machine, and o ∈ N is the operation

step of the product in the machine. Let R(t) = [r1(t) . . . rm(t)]′, ri(t) ∈ Z∗ be the remaining

supply, or raw materials, for each product given in number of batches of the first workstation for

this product’s route for each time t ∈ 0, 1, 2, · · · .... Also, let Ψ = [ψ1 . . . ψm]′, ψi ∈ Z∗ be the

amount of each product completed, given in batches of the final machine in the product’s route.

Allowing for workstations requires a trivial mapping from machine number to workstation number.

The schedule, u, creates a sequence, RK , where K is the number of elements in the schedule, by

setting Ri,ui to the number of batches of the first workstation in a load of the product at step i, u(i)

and all other values of Ri set to 0. Define d ∈ N as the index into R, where d(0) = 1.

We will first handle the update rules of general machines, we will handle special cases

next. The amount possibly loaded into a machine that is not in the first workstation of the current
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product’s route is given by:

`+i (t + 1) = `i(t) + min
{

1− `i(t),
`prev(t)
Ob,π,prev

}
.

The amount possibly unloaded from a machine that is not the last machine of the current product’s

route is given by:

`−i (t + 1) = `i(t)−min {`i(t), (1− `next(t))(Ob,π,next)} .

If the machine is in the last workstation of the current product’s route (oi = ofinal), it unloads all

of its product. So the load of machine i changes according to:

`i(t + 1), =





`+i (t + 1), θi = θl and θprev = θu

`−i (t + 1), θi = θu and θnext = θl

0, oi = ofinal

`(t) otherwise.

When machine i is running, T is incremented at each time step. If the machine is empty, T is reset

to 0. The update function for T is given by:

Ti(t + 1) =





Ti(t) + 1 θi = θr

0 `i = 0

Ti(t) otherwise.

The values for π and o are set when loading a product from machine i to machine j (this implies

that machine j is not in the first workstation of the current product’s route) the update functions

for π and o are:

πj(t + 1) =





πi(t) θi = θu and `j = 0

πj(t) otherwise

oj(t + 1) =





oi(t) + 1 θi = θu and `j = 0

oj(t) otherwise.
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The storage, Ψ is incremented whenever a machine in the last workstation of the current route is

unloaded, so

ψi(t + 1) =
{

ψi(t) + 1,

A machine in the first workstation of a product’s route loads from R. Say the non-zero

location in R(t) (at most there will be one) is a. Let the machine in the first workstation be i, then

machine i is updated as follows:

`i(t + 1) =





1 θi = θl

`−i (t + 1), θi = θu and θnext = θl

`(t), otherwise

πi(t + 1) =





a, θi = θl

pii(t), otherwise

oj(t + 1) = 1

R is updated as follows:

ri(t + 1) =





Ud+1,i, R(t) = 0

ri(t)− 1, θj = θl

ri(t), otherwise.

d(t) = d + 1.

Using this simulation we can then calculate each transition’s idle time, ∆(k). ∆(k) is the idle

time of the final workstation once the entire load of the product scheduled at step k − 1, u(k − 1),

has left the machine until the product scheduled at step k, u(k), begins using the machine, or

dominates the factory. Note that although the final workstation may be idle at various times during

the production of a given load for a specified product, this idle time does not contribute to ∆(k),

which really captures the inefficiency related to load transitions. r(k) follows simply as the total

amount of time that the product scheduled at step k, u(k), dominates the factory.

Finally, an important issue for such general manufacturing systems is deadlock. Deadlock

is discussed in [11] and [4]. Four conditions for deadlock are given in [2] and heuristic methods

for avoiding and preventing deadlock are given in [12]. We implemented a method of deadlock

prevention by preventing one of the conditions necessary for deadlock. To do this, we define a linear

ordering of the workstations. We then only allow products to occupy workstations in an increasing
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order. If the recipe dictates that a product use a machine in a decreasing order, we require that

all workstations of lower order be reserved, meaning that there must always be one free machine in

that workstation, until the product has completed processing of the earlier stages. Although this is

a conservative policy, it will prevent deadlock from occurring.
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Chapter 6

Approximation Algorithm

In order to determine a schedule we reduce the factory to a model of a single-machine

manufacturing system with sequence dependent setup times. We define a transition cost to be the

one-step approximation of the idle time of the transition plus the run time of product transitioned

to. That is, to calculate the transition cost from product i to product j, we construct the schedule

u = (i, j) and compute ∆(1) + r(1) for this schedule, this is the transition cost.

The single-machine problem with sequence dependent setup times is known to be a combi-

natorial problem solved as the TSP as discussed in [7]. The formulation we derive is based on the

IP formulation of the TSP given in [13]. We will view scheduling as traversing a graph. If a load of

product i is followed by a load of product j, it will be represented by an arc from node i to node j.

The cost of transitioning from node i to node j will be given by the transition cost from product i

to product j. We wish to minimize total transition cost while still producing a set amount of loads

of each product. The derivation of the IP formulation is given.

Let the matrix C be the cost matrix for a directed graph representing the transition costs of

every product that we desire to make where cij is the transition cost from product i to product j. If

a non-cyclical schedule is desired, this graph must contain a dummy node (0) which represents the

empty factory. Because there is no product to transition to when emptying the factory, we define

the transition cost from any product to the empty factory to be 0. In the case of a non-cyclical

schedule, C is a [m + 1 × m + 1] matrix. The matrix X specifies which arcs to traverse to reach

quota and is the same size as C. If we let xij represent the number of times the arc from node i to

node j is traversed and cij the cost of that traversal, the objective function for the IP problem is

thus:

min
X

m∑

j=0

m∑

i=0

cijxij .
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Because we want a tour, each node must have the same number of incoming arcs as outgoing arcs.

This adds the constraint:

m∑

i=0

xij −
m∑

l=0

xjl = 0; j = 0, 1, . . . , m.

Let q be the quota vector. We will set the quota of node 0 to be 1. The following constraint is

added:

m∑

i=0

xij = qj ; j = 0, 1, . . . , m.

The values of X are limited to be integer values because they are the number of times each arc is

to be traversed. The full IP problem is:

min
X

m∑

j=0

m∑

i=0

cijxij

subject to
m∑

i=0

xij −
m∑

l=0

xjl = 0;

j = 0, 1, . . . ,m
m∑

i=0

xij = qj ;

j = 0, 1, . . . ,m

xij ∈ {0, 1, . . .}.

(6.1)

However, this formulation allows for disjoint sets. Let ς be the smallest subtour or disjoint set, ς

is a set containing each arc in the subtour. Since we want to find a single tour, this problem may

be iteratively solved adding a constraint each iteration to break the smallest subtour, ς, of length

ςlength:

∑

i,j∈ς

xij < ςlength (6.2)

Once there is a single tour, the matrix X will represent a directed graph and will specify

the number of times each arc is to be traversed. An algorithm to determine a schedule based on X

is given in Table 6.1.
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• Initialize i := 0, j := 1

• For every arc in X do:

– while xii! = 0

∗ Add(Sj , i) and decrement xii

– if X contains no more outgoing arcs from i

∗ i = Pop(Q)
∗ increment j

– else if X contains more than one outgoing arc from i

∗ Push(Q, i)

– Add(Sj , i)
– Arbitrarily traverse an available arc and remove that arc from the graph

• For all Sk, k ∈ {2, . . . , j} do:

– if length(Si)! = 1

∗ find Sj such that front(Si) ∈ Sj

∗ replace occurrence of front(Si) in Sj with Si

– delete Si

Table 6.1: Algorithm for determining a schedule based on X.
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Chapter 7

A Max-Plus Representation

Because this problem is NP-complete, we wish to analyze this system in order to validate

the approximation method. However, due to the recursive nonlinear definition of f(x, u, k) we seek

a different representation of this system. To reduce the complexity of the model given in chapter

?? we will consider a further simplification of the factory and allow only a single machine at each

workstation. This enables us to model the system using a linear max-plus representation.

To create the model, we will consider the system as a heap model. We will represent the

time that workstation i spends processing a batch of job type j as a piece of width one and height

τi(j). The piece for job type j and workstation i is given by a matrix Pi(j) which is equal to I

except that [Pi(j)]ii = τi(j). We represent the precedence of workstation i over i + 1 using a piece

of width two and height 0. This matrix, Ri, is equal to I except that [Ri]i,i+1 = [Ri]i+1,i = e.

Using these pieces we can construct the heap created by job type j using the algorithm

given in Figure 7.1. This algorithm multiplies several piece matrices together to arrive at a matrix

which we refer to as A(j). We will show that this matrix defines the linear max-plus model for (??).

Thus, the system can now be represented in the max-plus algebra as

x(k + 1) = A(uk)⊗ x(k)

y(k) = ||x(k)||1 ® ||x(k − 1)||1.
(7.1)

The 1-norm specified here is the max-plus 1-norm.

7.1 Properties

To ease notation we will introduce some new symbols. Given A, we define

ξij = aij − ai,j+1,

δi = ai+1,1 − ai1.
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These representations are meaningful because:

We will give a definition of matrix structure.

Definition 7.1.1 We will say that a matrix A has the monotone property if:

1. aij ≤ ai+1,j,

2. aij ≥ ai,j+1,

3. ξ1i ≥ ξ2i ≥ . . . ≥ ξi−1,i = . . . = ξni ≥ 0, ∀i ≤ n,

4. aij > −∞, ∀i ≤ j ≤ n.

Note to self: it seems that property 3 should be modified, I think we only have equality

after the diagonal.

Lemma 7.1.1 A matrix B ∈ Rn×n
max with the monotone property maintains property 2 of the mono-

tone property after finitely many left multiplications of Pi and Ri for some job type with n stages.

Proof: Let B ∈ Rn×n
max with the monotone property, and i ≤ n be given. Property 2 of the

monotone property is trivially maintained after a left multiply of Pi. Suppose that i < n. Consider

the product A = Ri⊗B. We want to show that aij ≥ ai,j+1 and ai+1,j ≥ ai+1,j+1 for all j < n. We

will consider two cases.

Suppose bij ≥ bi+1,j . Then aij = bij = ai+1,j . Because B has property 2 of the monotone

property it follows that bij ≥ bi,j+1 and bij ≥ bi+1,j ≥ Bi+1,j+1. So aij ≥ ai,j+1 and ai+1,j ≥
ai+1,j+1.

Suppose bi+1,j ≥ bij . We achieve the same result as the previous case in the same manner.

Thus, because B maintains property 2 of the monotone property after a left multiply of an

arbitrary Pi or Ri, after a finite number of left multiplies, the resulting matrix will satisfy property

2 of the monotone property.

Lemma 7.1.2 A matrix B ∈ Rn×n
max with the monotone property maintains property 3 of the mono-

tone property after finitely many left multiplications of Pi and Ri for some job type with n stages.

The proof for this lemma only shows that a weakened version of property 3 is maintained,

that where we replace the equalities with inequalities.

Proof: Let B ∈ Rn×n
max with the monotone property be given. Left multiplying B by Pi adds

the same number to every element of row i. As this does not change bij − bi,j+1 for any j, the
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resulting matrix still satisfies the desired property. Now suppose that we left multiply B by Ri for

some i < n. The resulting matrix, A, has rows i and i + 1 equal. We now have aij − ai,j+1 =

max(bij , bi+1,j) − max(bi,j+1, bi+1,j+1) = ai+1,j − ai+1,j+1. We will handle each of the four cases

separately.

Suppose bij ≥ bi+1,j and bi,j+1 ≥ bi+1,j+1. Then

aij − ai,j+1 = bij − bi,j+1

and
ai+1,j − ai+1,j+1 = bij − bi,j+1

≥ bi+1,j − bi+1,j+1.

Suppose bij ≥ bi+1,j and bi,j+1 ≤ bi+1,j+1. Then

aij − ai,j+1 = bij − bi+1,j+1

≤ bij − bi,j+1

and
ai+1,j − ai+1,j+1 = bij − bi+1,j+1

≥ bi+1,j − bi+1,j+1.

Suppose bij ≤ bi+1,j and bi,j+1 ≥ bi+1,j+1. Then

aij − ai,j+1 = bij − bi,j+1

≤ bi+1,j − bi+1,j+1

which violates the assumption on B, so this case is not possible.

Finally, suppose bij ≤ bi+1,j and bi,j+1 ≤ bi+1,j+1. Then

aij − ai,j+1 = bi+1,j − bi+1,j+1

≤ bi,j − bi+1,j

and

ai+1,j − ai+1,j+1 = bi+1,j − bi+1,j+1.

We have shown that in any case, aij − ai,j+1 ≤ bij − bi,j+1 and ai+1,j − ai+1,j+1 ≥ bi+1,j −
bi+1,j+1. Clearly for any k 6= i and k 6= i + 1, ak,j − ak,j+1 = bkj − bk,j+1 for all j. Thus,
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akj − ak,j+1 ≥ ak+1,j − ak+1,j+1, so property 1 of the monotone property is maintained after a left

multiply of Ri.

Because we have shown that the resulting matrix after a left multiply of arbitrary Pi or

arbitrary Ri maintains property 3 of the monotone property, it follows that property 3 of the

monotone property is maintained after a finite number of left multiplies.

Theorem 7.1.1 Given (c, τ )(α), A(α) has the monotone property.

Proof: Let (c, τ )(α) be given. The algorithm for constructing A(α) begins with I. The block

of I consisting of i11 trivially has the monotone property. Thus we know by the lemmata 7.1.1

and 7.1.2 that this block maintains properties 2 and 3 of the monotone property throughout the

algorithm. We will show by induction that by the end of the algorithm the entire matrix has both

of these properties. Suppose that at the pth stage of the algorithm, the block from b11 to bkk of the

current matrix B has properties 2 and 3 of the monotone property and the remainder of the matrix

consists of −∞ off the diagonal and 0 on the diagonal. Consider now C = Rk ⊗B, we can suppose

without loss of generality that this is the next operation the algorithm performs. Row k + 1 of C is

equal to row k of C, so the block from c11 to ck+1,k+1 has property 3 of the monotone property. The

only difference between row k of C and row k of B is that ck,k+1 = 0 and bk,k+1 = −∞. Because

we must multiply by Pk before Rk, ckk > 0 = ck,k+1, so the block from c11 to ck+1,k+1 has property

2 of the monotone property. Also, the remainder of C consists of −∞ off the diagonal and 0 on the

diagonal. Therefore, by induction, A has these properties.

It remains to be shown that A has properties 1 and 4 of the monotone property. Property

4 comes due to the fact that

A = Rn−1 ⊗Bn−1 ⊗Rn−2 ⊗Bn−2 ⊗ . . .⊗R1 ⊗ P1 ⊗ I

where Bn−j is some intermediate matrix sum.

For property 1, consider the last multiplication of Pi for some i. This is necessarily followed

by a multiplication of Ri, at this point the resulting matrix, C, has cij = ci+1,j . This matrix is

necessarily multiplied by Pi+1; this resulting matrix, D, has dij ≤ di+1,j , at this point we know

aij = dij and ai+1,j ≤ di+1,j , so A must have property 1.

The fact that A has the monotone property gives two easy results
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Corollary 7.1.1 Given (c, τ )(α), we have the following:

||A(α)||1 = an1(α)

min
x
||A(α)⊗ x||1 ® ||x||1 = ann(α).

Proof: Let A be given. Due to monotonicity of A,

||A||1 = max
ij

aij

= an1.

And
min

x
||A⊗ x||1 ® ||x||1 = mini(eT ⊗A)

= mini([an1, . . . , ann])

= ann.

7.1.1 stability

We can write this A matrix in terms of a11, the ξi’s and r, where ri = ai−1,1 − ai,1. Then aij =

a11 −
∑j−1

l=1 ξil +
∑i−1

k=1 ri.

Given two distinct vertices, vi and vj , in A, we will define Pvivj as

Pvivj =





−
vj−1∑

k=vi

ξvj ,k vi < vj

vi−1∑

k=vj

ξvj ,k vi > vj

.

Lemma 7.1.3 Given a circuit, γ in A,
∑

vi∈γ Pvivi+1 ≤ 0.

Proof: We will first enumerate the vertices in A as {1, 2, 3, . . . , n}, similarly we will enumerate

the vertices in γ as {v1, v2, . . . , vl}, with |γ|l = l. We will let k correspond with a vertex in A

and show that the sum over each k, 0 < k < n is less than or equal to zero, and that the sum

over all 0 < k < n is the sum in question. Let 0 < k < n be given. We will say that if there is

some i such that vi ≤ k < vi+1 we will add ξvi+1,k. If there is some i such that vi+1 ≤ k < vi

we will add −ξvi+1,k. Since γ is a circuit, we will have vi ≤ k < vi+1 for some i iff there is some

j 6= i such that vj+1 ≤ k < vj . Let Ik be the set of all i ≤ n such that vi ≤ k < vi+1 and let Jk
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be the set of all j ≤ n such that vj+1 ≤ k < vj . Note that Ik and Jk have the same number of

elements. The total sum at k is
∑

i∈Ik
ξvi+1,k −

∑
j∈Jk

ξvj+1,k. Because ∀j ∈ Jk(vj+1 ≤ k) and ∀i ∈
Ik(k < vi+1), it follows that ∀i ∈ Ik, j ∈ Jk, vj+1 < vi+1 and by theorem 7.1.1 ξvj+1,k ≥ ξvi+1,k. Thus
∑

i∈Ik
ξvi+1,k−

∑
j∈Jk

ξvj+1,k ≤ 0. We will expand the sets Ik and Jk to I = {i|vi < vi+1, vi, vi+1 ∈ γ}
and J = {j|vj+1 < vj , vj , vj+1 ∈ γ}. Then

∑
vi∈γ

Pvivi+1 =
∑

i∈I

vi+1−1∑

l=vi

ξvi+1,l −
∑

j∈J

vj−1∑

l=vj+1

ξvj+1,k

=
n−1∑

k=1

(
∑

i∈Ik

ξvi+1,k −
∑

j∈Jk

ξvj+1,k)

≤ 0.

Lemma 7.1.4 Let amm be the maximum diagonal element in A. Then

m−1∑

i=1

ξmi −
m−1∑

i=1

ri −
j−1∑

i=1

ξji +
j−1∑

i=1

ri ≤ 0

for any j ≤ n with equality iff amm = ajj.

Proof: Let j ≤ n be given. ajj = amm +
∑m−1

i=1 ξmi −
∑m−1

i=1 ri −
∑j−1

i=1 ξji +
∑j−1

i=1 ri. Because

ajj is on the diagonal, ajj ≤ amm, so
∑m−1

i=1 ξmi −
∑m−1

i=1 ri −
∑j−1

i=1 ξji +
∑j−1

i=1 ri = ajj − amm ≤ 0

and equality is achieved if and only if ajj = amm.

Lemma 7.1.5 If γ is a circuit in the graph of A and amm is the maximum diagonal element of A,

then w(γ) ≤ amm with equality only if ajj = amm∀j ∈ γ.
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Proof: Let k = |γ|l. We will consider kw(γ). Then

kw(γ) = av2v1 + av3v2 + . . . + avkv1

= a11 −
v1−1∑

i=1

ξv2i +
v1−1∑

i=1

ri + a11 −
v2−1∑

i=1

ξv3i +
v2−1∑

i=1

ri + . . . +

a11 −
vk−1∑

i=1

ξv1i +
vk−1∑

i=1

ri

= kamm +

(
m−1∑

i=1

ξmi −
m−1∑

i=1

ri −
vk−1∑

i=1

ξv1i +
v1−1∑

i=1

ri

)
+

(
m−1∑

i=1

ξmi −
m−1∑

i=1

ri −
v1−1∑

i=1

ξv2i +
v2−1∑

i=1

ri

)
+ . . . +

(
m−1∑

i=1

ξmi −
m−1∑

i=1

ri −
vk−1−1∑

i=1

ξvki +
vk−1∑

i=1

ri

)

We can decompose
∑vj−1

i=1 ξvj+1i as
∑vj+1−1

i=1 ξvj+1i + Pvjvj+1 . Thus by lemma 7.1.4, each

m−1∑

i=1

ξmi −
m−1∑

i=1

ri −
vj−1∑

i=1

ξvj+1i +
v1−1∑

i=1

ri =
m−1∑

i=1

ξmi −
m−1∑

i=1

ri −
vj+1−1∑

i=1

ξvj+1i +
v1−1∑

i=1

ri + Pvjvj+1

≤ Pvjvj+1 .

With equality when ajj = amm.

Thus

kw(γ) ≤ kamm +
∑

vj∈γ Pvjvj+1

≤ kamm

w(γ) ≤ amm.

(7.2)

We get equality in (7.2) if and only if ajj = amm ∀j ∈ γ.

Lemma 7.1.6 Every vertex in the critical graph of A has a self loop.

Proof: Let v be a vertex in the critical graph of A. This means that v is in a critical circuit

of A which we will call γ. By Lemma 7.1.5, it must be that w(γ) = amm because vertex m has a

self loop with average weight amm which must be in the critical graph. Furthermore, since v ∈ γ,

avv = amm, so the self loop on v must also be in the critical circuit of A.

Theorem 7.1.2 Given a recipe (c, τ), the associated max-plus matrix A has cyclicity one.
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Proof: By lemma 7.1.6, every vertex in the critical graph of A has a self loop. In [5] the

cyclicity of a matrix is defined to by the cyclicity of the critical graph of that matrix. We will call

G the critical graph of A.

Suppose that G is strongly connected. The cyclicity of A is the greatest common divisor of

the lengths of all elementary circuits in G. Because every node in G has a self loop, the elementary

circuits of those self-loops have length one, thus the cyclicity of G must be one.

Suppose that G is not strongly connected. Then the cyclicity of G (and thus A) is the least

common multiple of the cyclicities of all maximal strongly connected subgraphs (m.s.c.s.’s) of G.

Again, since each node in each m.s.c.s. of G has a self-loop, the cyclicity of each m.s.c.s. is one and

thus the cyclicity of G is one.
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Ps = Rs = zeros(n,1)

M = I

B = lcm(c) ./ c

while (¬ all(B == Rs) )

for i = 1:resources

if (i == 1)

if(Psi == Rsi)

M = Pi ⊗M

Psi ++

elif((Rsi + 1 == Psi)

∧
(
Rsi+1 ==

⌈
(Rsi+1)ci(uk)

ci+1(uk)

⌉
− 1

))

M = Ri ⊗M

Rsi ++

end

elif(i == n)

if
((

Psi−1 ==
⌈

(Psi+1)ci(uk)
ci−1(uk)

⌉)

∧(Psi == Rsi))

M = Pi ⊗M

Psi ++

elif(Psi == Rsi + 1)

Rsi ++

end

else

if
((

Psi−1 ==
⌈

(Psi+1)ci(uk)
ci−1(uk)

⌉)

∧(Psi == Rsi))

M = Pi ⊗M

Psi ++

elif((Rsi + 1 == Psi)

∧
(
Rsi+1 ==

⌈
(Rsi+1)ci(uk)

ci+1(uk)

⌉
− 1

))

M = Ri ⊗M

Rsi ++

end

end

end

end

A = M

Figure 7.1: Algorithm for determining A using the heap model.
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Chapter 8

Error Bounds for Approximation Method

We will briefly extend the approximation method given in [14] to the max-plus formulation.

For the t-step approximation, given a sequence U = (uk, . . . , uk+t) we approximate (7.1) as

x̃t(k + 1) = A(uk+t)⊗ . . .⊗A(uk)⊗ x∗

ỹt(k) = ||x̃t(k)||1 ® ||x̃t−1(k − 1)||1.

Where we define x∗ = e. This approximation eases the solution to (??) as it exponentially reduces

the number of possible states and therefore number of values to compute at each stage of the dynamic

program that solves the problem. This replaces a large NP-complete problem with a much smaller

NP-complete problem. Using this approximation, much more complex problems can be solved.

The error of a single step of the t-step approximation is given by

εt(k) = |y(k)® ỹt(k)|.

We can explicitly calculate the error bound for the 0-step approximation for job type j.

Theorem 8.0.3 The maximum error of the 0-step approximation for job type j is

0 ≤ ε0(k) ≤ γ0(j) = an1(j)® ann(j)

Proof: Let A(j) be given. The maximum error of the 0-step approximation is given by

γ0(j) = max
x
{(||A⊗ x∗||1 ® ||x ∗ ||1)® (||A⊗ x||1 ® ||x||1)}

Using x∗ = e, we get

||A⊗ x∗||1 ® ||x∗||1 = an1.
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Also by corollary 7.1.1 we get

min
x

(||A⊗ x||1 ® ||x||1) = ann.

Thus,

γ0(j) = an1 ® ann

Note that the 0-step approximation is not very useful as it treats the dynamic system as a static

function with a single input. Therefore, every sequence has the same cost in the 0-step approxima-

tion.

8.1 1-step Approximation

We will now extend to the error bound of the 1-step approximation and in the next section to the

t-step approximation. We will first define some notation.

Definition 8.1.1 For a job type j, we define

Z
(1)
i (j) = [ai1 ® ai−1,1 · · · ain ® ai−1,n]⊗ e

z
(1)
i (j) = ai1 ® ai−1,1.

where it is understood that each aij is from A(j).

Lemma 8.1.1 For job type j, for any x ∈ Rn
max, we have x(1) = A(j)⊗ x, and

z
(1)
i (j) ≤ x(1)i ® x(1)i−1 ≤ Z

(1)
i (j).

Proof: Let x ∈ Rn
max be given. Then x(1) = A ⊗ x. Suppose that xi(1) = aij ⊗ xj and

xi−1(1) = ai−1,l ⊗ xl. Thus, aij ⊗ xj ≥ aip ⊗ xp for all p ≤ n, and ai−1,l ⊗ xl ≥ ai−1,p ⊗ xp, for all

p. Through algebraic manipulation we achieve

xj ® xp ≥ aip ® aij ∀p ≤ n,

xp ® xl ≤ ai−1,l ® ai−1,p ∀p ≤ n.
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Using these inequalities, we prove the first inequality

xi(1)® xi−1(1) = (aij ⊗ xj)® (ai−1,l ⊗ xl)

≥ (aij ⊗ ail)® (ai−1,l ⊗ aij)

≥ ai1 ® ai−1,1.

The second inequality follows similarly

xi(1)® xi−1(1) = (aij ⊗ xj)® (ai−1,l ⊗ xl)

≤ (aij ⊗ ai−1,l)® (ai−1,l ⊗ ai−1,j)

≤ [ai1 ® ai−1,1 . . . ain ® ai−1,n]⊗ e

Now we will examine the error of the 1-step approximation. This is given by

γ1(uk−1, uk) = max
x
{(||A(uk)A(uk−1)x∗||1

®||A(uk−1)x∗||1)
®(||A(uk)A(uk−1)x||1
®||A(uk−1)x||1)}

(8.1)

Note that since x∗ = e, the numerator of this fraction is a constant calculated from

||A(uk)⊗A(uk−1)⊗ x∗||1 = [an1 . . . ann](uk)

⊗[a11 . . . an1]T (uk−1)

and

||A(uk−1)⊗ x∗||1 = an1(uk−1).

Which give us

[an1(uk)⊗ a11(uk−1)® an1(uk−1), · · · , ann(uk)]⊗ e
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Because we ultimately want to know the difference between the 0-step approximation and the 1-step

approximation, we are interested in the quantity

(||A(uk)⊗ x∗||1 ® ||x∗||1)
®(||A(uk)A(uk−1)x∗||1 ® ||A(uk−1)x∗||1).

Which by our previous calculations we can calculate and we define

δ1 =[an1(uk−1)® a11(uk−1),

(an1(uk)⊗ an1(uk−1))® (an2(uk)⊗ a21(uk−1)),

· · · , an1(uk)® ann(uk)]⊗ e

>e

The action of maximizing (8.1) is done by minimizing the denominator. So we wish to solve

min
x

(||A(uk)A(uk−1)x||1 ® ||A(uk−1)x||1).

This problem is similar to the zero step approximation, except that we have A(uk−1)x everywhere

we used to have just x. So now we have a similar problem, but with an extra constraint.

As when calculating

min
x

(||A⊗ x||1 ® ||x||1)

we wanted xn = e with xi = ε for all other i, we want [A(uk−1) ⊗ x]n = e and [A(uk−1) ⊗ x]i

as small as possible. By lemma 8.1.1, we know that once we fix [A(uk−1) ⊗ x]n = e the smallest

[A(uk−1)⊗ x]i can be is e®⊗n
j=i+1 Z

(1)
j (uk−1). We will pick x so that

A(uk−1)⊗ x = [e®
n⊗

j=2

Z
(1)
j (uk−1), · · · , e]T .

This value achieves

min
x

(||A(uk)⊗A(uk−1)⊗ x)||1 ® ||A(uk−1)⊗ x||1)

=[an1(uk)® (
n⊗

i=2

Z
(1)
i (uk−1)), · · · , ann(uk)]⊗ e
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Again, we are interested in the difference between this value and that of the 0-step approximation,

we will define

δ2 =min
x

(||A(uk)⊗A(uk−1)⊗ x||1 ® ||A(uk−1)⊗ x||1)

®min
x

(||A(uk)⊗ x||1 ® ||x||1)

=[an1(uk)® ann(uk)® (
n⊗

i=2

Z
(1)
i (uk−1)), . . . , e]⊗ e

≥e.

This proves the following theorem.

Theorem 8.1.1 The bound of the error of the 1-step approximation for the two job type sequence

(u1, u2) is

0 ≤ γ1(u1, u2) = γ0(u2)® δ1 ® δ2.

8.2 t-step Approximation

We will now extend this result to the t-step approximation. The t-step approximation error bound

for sequence U = (u1, . . . , ut) is given by

γt(U) = max
x

(||A(ut)⊗ . . .⊗A(u1)⊗ x∗||1
®||A(ut−1)⊗ . . .⊗A(u1)⊗ x∗||1)
®(||A(ut)⊗ . . .⊗A(u1)⊗ x||1
®||A(ut−1)⊗ . . .⊗A(u1)⊗ x||1)

(8.2)

We will define a recursive definition which we will use to bound x(k)
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Definition 8.2.1 Given a sequence of length t of job types, U = (u1, u2, . . . , ut),

Z
(t)
l (U) =

⊕

d1 ∈ DZ(l− 1)

d2 ∈ DZ(l)

d1 ≤ d2

(ald2(ut)® al−1,d1(ut)

⊗
d2⊗

j=d1+1

Z
(t−1)
j (U t−1)




z
(t)
l (U) = min

d1 ∈ Dz(l− 1)

d2 ∈ Dz(l)

d1 ≤ d2

(ald2(ut)® al−1,d1(ut)

⊗
d2⊗

j=d1+1

z
(t−1)
j (U t−1)


 .

With
DZ(i) = {d | ∀k < d

aik ® aid ≤
d⊗

j=k+1

Zt−1
j (U t−1)








Dz(i) = {d | ∀k > d
aid ® aik ≥

k⊗

j=d+1

zt−1
j (U t−1)








Here we use the notation U t−1 to mean (u1, . . . , ut−1). Here, we still have Z
(1)
l (u1) and z

(1)
l (u1) as

in definition 8.1.1.

Note that due to the monotonicity of A, Zi is achieved with the maximum d1 ∈ DZ(i − 1) and

d2 ∈ DZ(i), and zi is achieved with the minimum d1 ∈ Dz(i− 1) and d2 ∈ Dz(i).

We will develop a lemma similar to that in the previous section

Lemma 8.2.1 Given a sequence of length t, U = (u1, . . . , ut), for any x ∈ Rn
max, we have x(t+1) =

A(ut)⊗ . . .⊗A(u1)⊗ x with

z
(t)
i (u) ≤ xi(t + 1)® xi−1(t + 1) ≤ Z

(t)
i (u).
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Proof: We will prove this lemma by induction. We already have the base case in lemma 8.1.1.

Define x(k) = A(uk−1)⊗ . . .⊗A(u1)⊗ x and suppose that

z
(k−1)
i (Uk−1) ≤ xi(k)® xi−1(k) ≤ Z

(k−1)
i (Uk−1). (8.3)

Now, considering x(k+1) = A(uk)⊗x(k), we wish to determine bounds on xi(k)®xi−1(k). Suppose

that xn(k) = 0 and xi(k+1) = aij(uk)⊗xj(k) and xi−1(k+1) = ai−1,p(uk)⊗xp(k). These conditions

require

aij(uk)⊗ xj(k) ≥ ail(uk)⊗ xl(k) ∀l ≤,

ai−1,p(uk)⊗ xp(k) ≥ ai−1,l(uk)⊗ xl(k) ∀l ≤ n.

This is

ail(uk)® aij(uk) ≤ xj(k)® xl(k) ∀l ≤ n, (8.4)

ai−1,l(uk)® ai−1,p(uk) ≤ xp(k)® xl(k) ∀l ≤ n. (8.5)

Which leads us to
aip ⊗ xp(k) ≤ aij ⊗ xj(k)

⇒ aip ® aij ≤ xj(k)® xp(k).

Similarly we get ai−1,p ® ai−1,j ≥ xj(k)® xp. This gives us

ai−1,p ® ai−1,j ≥ aip ® aij .

By the monotonicity of A, this implies p ≤ j.

Combining (8.4) and (8.5) with (8.3), we get

ail(uk)® aij(uk) ≤
j⊗

r=l+1

Zk−1
r (uk−1) ∀l < j, (8.6)

aij(uk)® ail(uk) ≥
l⊗

r=j+1

zk−1
r (uk−1) ∀l > j, (8.7)
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and

ai−1,l(uk)® ai−1,p(uk) ≤
p⊗

r=l+1

Zk−1
r (uk−1) ∀l < p, (8.8)

ai−1,p(uk)® ai−1,l(uk) ≥
l⊗

r=p+1

zk−1
r (uk−1) ∀l > p. (8.9)

We are interested in xi(k + 1)® xi−1(k + 1), which equals

aij ⊗ xj(k)® (ai−1,p ⊗ xp(k)).

Because p ≤ j, we get

j⊗
r=p+1

z(k−1)
r (Uk−1) ≤ xj(k)® xp(k) ≤

j⊗
r=p+1

Z(k−1)
r (Uk−1)

This gives us

aij(uk)® ai−1,p(uk)⊗
j⊗

r=p+1

z(k−1)
r (uk−1) (8.10)

≤ xi(k + 1)® xi−1(k + 1) (8.11)

≤ aij(uk)® ai−1,p(uk)⊗
j⊗

r=p+1

Z(k−1)
r (uk−1). (8.12)

To generalize this result for any p, j, we want to minimize (8.10) and maximize (8.12) subject to the

constraints we have shown for p and j. In the case of minimizing (8.10), we want to pick p and j as

small as possible.

Considering our constraints, if (8.6) is violated by some j and l, then we have

ail(uk)® aij(uk) >

j⊗

r=l+1

Zk−1
r (uk−1).

But this means there is some j′ < j, namely l, such that

aij′(uk)® aij(uk) ≥
j⊗

r=j′+1

zk−1
r (uk−1).

Clearly, if j′ satisfies the other constraints it will be a better choice than j, so we ignore constraint

(8.6) and similarly (8.8) when minimizing (8.10). Using a similar argument, we ignore constraints
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(8.7) and (8.9) when maximizing (8.12). Therefore, (8.10 - 8.12) become

z
(k)
i (Uk) ≤ xi(k + 1)® xi−1(k + 1) ≤ Z

(k)
i (Uk).

By induction we conclude with the lemma.

Using these bounds, we will prove the following lemma.

Lemma 8.2.2 Given a sequence U = (u1, . . . , ut),

A(ut)⊗ . . .⊗A(u1)⊗ x∗ =




xn ®
(

n⊗

i=2

z
(t)
i (U)

)

...

xn ® z
(t)
n (U)

xn




Proof: We will prove this by induction. The base case is trivially true. We will suppose that

x(k) = A(uk−1)⊗ . . .⊗A(u1)⊗ x∗

=




xn ®
(

n⊗
r=2

z(k−1)
r (Uk−1)

)

...

xn ® z
(k−1)
n (Uk−1)

xn




We will calculate x(k + 1) = A(uk) ⊗ x(k). Consider xi(k + 1). Suppose that xi(k + 1) = aij ⊗
x1(k)⊗⊗j

r=2 z
(k−1)
r (Uk−1). This implies that

aij ⊗
j⊗

r=2

z(k−1)
r (Uk−1) ≥ ail ⊗

l⊗
r=2

z(k−1)
r (Uk−1) ∀l ≤ n

Therefore, j is the smallest index for which (8.7) holds. Similarly, xi−1(k + 1) = ai−1,p ⊗ xp(k) has

the smallest index p for which (8.9) holds. It also follows as before that p ≤ j. Therefore, we get

xi(k + 1)® xi−1(k + 1) = zk
i (Uk).

And we conclude with the lemma.
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Theorem 8.2.1 Given a sequence of job types, U = (u1, . . . , ut),

γt(U) ≤ γt−1(u2, . . . , ut).

Proof: The equation for γt(U) is given in (8.2). To calculate γt(U) ® γt−1(u2, . . . , ut), which

we will hereafter refer to simply as γt and γt−1, we will consider two parts. First we will consider

(||A(ut)⊗ . . .⊗A(u1)⊗ x∗||1
®||A(ut−1)⊗ . . .⊗A(u1)⊗ x∗||1)
® (||A(ut)⊗ . . .⊗A(u2)⊗ x∗||1
®||A(ut−1)⊗ . . .⊗A(u2)⊗ x∗||1) .

Using lemma 8.2.2 we write this as


a11(ut)®




n⊗

j=2

z
(t−1)
j (ut−1)




· · · an−1,1(ut)® z
(t−1)
n (ut−1), ann(ut)

]
⊗ e

®

a11(ut)®




n⊗

j=2

z
(t−2)
j (u2, . . . , ut−1)




· · · an−1,1(ut)® z
(t−2)
n (u2, . . . , ut−1), ann(ut)

]
⊗ e.

≤ e.

Where the last line is a result of the fact that z
(t−1)
i (U t−1) is more constrained than

z
(t−2)
i (u2, . . . , ut−1), which implies z

(t−1)
i (U t−1) ≥ z

(t−2)
i (u2, . . . , ut−1)

The other part that we wish to consider is

min
x

(||A(ut)⊗ . . .⊗A(u1)⊗ x||1
®||A(ut−1)⊗ . . .⊗A(u1)⊗ x||1)
®min

x
(||A(ut)⊗ . . .⊗A(u2)⊗ x||1

®||A(ut−1)⊗ . . .⊗A(u2)⊗ x||1)
≥ e.

Where we get the final line because the first minimization is more constrained, and therefore greater

than or equal to the latter minimization.

These two results give us γt ® γt−1 ≤ 0.
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Chapter 9

Conclusions and Future Work
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