
  

 

Abstract: Chemical reaction networks model biological 

interactions that regulate the functional properties of a cell; 

these networks characterize the chemical pathways that 

result in a particular phenotype.  One goal of systems 

biology is to understand the structure of these networks 

given concentration measurements of various species in the 

system.   Previous work has shown that this network 

reconstruction problem is fundamentally impossible, even 

for simplified linear models, unless a particular experiment 

design is followed.   Nevertheless, reconstruction algorithms 

have been developed that attempt to approximate a solution 

using sparsity or similar heuristics.  This work compares, in 

silico, the results of three of these methods in situations 

where the necessary experiment design has been followed, 

and it illustrates the degradation of each method as 

increasing noise levels are added to the data.       
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Introduction: Network Reconstruction 

The life processes of all organisms are carried out by 

chemical reaction networks within and between that 

organism’s cells. These networks consist of complex 

interactions among proteins, nucleic acids, and other 

molecules [1], [2], [3]. Often very little is understood about 

the underlying structure and function of these networks. This 

contributes to the inability to uncover the causes of many 

diseases or design a cure for them.  Although recent 

developments in biotechnology, such as DNA microarray, 

protein-protein interaction measurements, and protein chips, 

have produced massive amounts of quantitative data, there is 

still much to discover about how to use this data to 

understand the underlying networks [4], [5].   

 

One goal of systems biology is to understand the structure of 

these networks given concentration measurements of various 

species in the system.  This network reconstruction problem 

is shown to be impossible, even for simplified linear models, 

unless a particular experiment design is followed [6].  This 

essential experiment design demands that a particular input 
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output experiment is conducted for every node in the desired 

network representation of the system.  Thus, for example, if 

the system actually involves reactions between hundreds or 

thousands of distinct chemical species, we may only 

measure the concentrations of some limited number of these 

species.  The network structure we are looking for, then, is 

the causal relationship between the concentrations of these 

measured species--each of which may involve a pathway 

through a number of other unmeasured species in the 

system.  Note that since these intermediate species are 

unmeasured, we may not even be aware of their existence or 

of their role in the various pathways impacting the measured 

species 

 

Nevertheless, the network structure we desire is not 

necessarily the direct interaction between measured species, 

but it may involve a complex pathway through unmeasured 

species that we simply indicate as a connection between the 

relevant measured species.  This network would be the 

complete chemical reaction network if all species in the 

system are measured, but it simplifies to a proper abstraction 

of this network commensurate with the number of 

unmeasured, or “hidden” states in the system.  

 

Reconstructing this “coarse” structural representation of the  

“complete” network demands that a particular input-output 

experiment is performed for each measured species, or node, 

of the final network.  Specifically, the experiment for each 

node needs to perturb the measured species associated with 

that node without affecting the other measured species, as 

happens with silencing or inducible overexpression 

experiments for gene regulatory networks.  If such data is 

available, network reconstruction reduces to performing a 

sequence of system identification experiments and solving a 

linear system of equations.   If such data is not available, 

then one can demonstrate multiple structures that fit the data 

equally well. 

 

Various structure estimation algorithms have been 

developed without exploiting this understanding of the 

necessary experiment design for reconstruction.  These 

methods resolve the ambiguity resulting from insufficient 

and properly-informative data by enforcing a heuristic on the 

kinds of structures (such as sparse structures) believed to be 

most likely to occur in nature. 

 

The goal of this study is to compare the performance of three 

network reconstruction methods, assuming the appropriate 

experiment design is employed, ensuring that sufficiently 
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informative data is available for reconstruction—at least in 

the noise-free setting.  The first two methods employ 

heuristics such as sparsity to formulate convex optimization 

problems that select a structural estimate given input-output 

data from the system.  The third method computes the exact 

network structure, assuming no noise in the system, even 

though noise may actually be present.  We compare these 

methods in various situations of differing numbers of hidden 

states, and for differing amounts of noise.  Similar analyses 

of network reconstruction methods have been performed [7], 

[8], but none have concerned the particular methods 

discussed in this paper.  The next section describes the 

methodology for the in silico comparison experiment.    

 

Methodology: In Silico Experimentation 
The idea behind testing the reconstruction methods 

considered here is to 1) randomly generate various network 

models, 2) simulate the data for various “silencing” and wild 

type experiments from each model, and then 3) compare the 

performance of three reconstruction algorithms estimating 

the structure of the original network for each model.  

Repeating the experiment for various types of networks then 

facilitates an understanding of how the algorithms perform 

in different application domains. 

 

Randomized Network and Data Generator 

 

The heart of the in silico experimental process is a routine 

that generates random networks and their corresponding 

time series concentration data for a complete set of silencing 

and wild-type experiments.  Motivated by basic reaction 

kinetics, we represent chemical reaction networks by a 

system of coupled differential equations.  Moreover, we 

restrict our attention to linear networks here, since it seems 

that any reconstruction method that will work on real 

biological systems should at least perform well on simple, 

linear systems. 

 

 With this restriction to linear networks, our model becomes:  

 

 

 

 

 

where I   is the identity matrix,    is a vector 

of chemical concentrations for each species in the system, 

 is a vector of chemical concentrations for the p 

measured species in the system,  is a random 

noise vector, and d is a scalar weight on the noise vector.  

The matrix A is generated to ensure that 1) the system is 

stable, 2) the hidden states of the system are observable, and 

3) the resulting network structure between measured states 

reflects a desired level of connectivity.  The system is then 

simulated from a random initial condition, perturbed by 

noise generated at the desired signal to noise ratio, to yield 

10 sets of wild-type data for the system. Data for a complete 

set of silencing experiments is obtained from the system as 

follows.  The state vector  is augmented to include the 

concentration of a transgene.  The system dynamics are 

then augmented as  

 

 

 

where ei is a vector of zeros everywhere except in location i, 

and α is a degradation constant modeling the action of the 

transgene.  Resimulating the augmented system then yields 

the output when species i is silenced, and this process is 

repeated for all p measured states in the system.  

 

Thus, for each randomly generated network, a set of p+10 

datasets is provided: ten wild-type data sets in addition to 

data for p silencing experiments. Each algorithm uses a 

different subset of this data. The exact reconstruction 

algorithm uses the p silencing experiments, the LMI-based 

algorithm uses one wild-type experiment and the linear 

programming sparsity heuristic uses 10 wild type data sets.  

 

Although each of the algorithms requires different types of 

data, they all share the property that they take in time-series 

data and output a network structure. Hence, we are able to 

compare the accuracy of the algorithms by the number of 

correctly predicted connections in the adjacency matrix. 

 

Three reconstruction methods are then employed: exact 

reconstruction, a linear programming sparsity heuristic, and 

an LMI-based algorithm.  

  
Exact Reconstruction 

 

The exact reconstruction method refers to the results from 

[6] that demonstrate precisely how to obtain network 

structure for linear networks with no noise.  The 

methodology leverages knowledge about the perturbation, 

i.e. silencing, experimentation process to solve for the 

dynamical structure function of the system.  The Boolean 

structure of this function then reveals the presence or 

absence of edges in the network. 

 

To solve for the complete dynamical structure function of 

the system, we employ standard system identification 

methods, such as those from the MatLab System 

Identification Toolbox, to identify a transfer function 

associated with each of the p silencing experiments 

performed on the system.  These transfer functions can then 

be manipulated to find the dynamical structure function of 

the system. 

 

A quicker method employs only the steady state values from 

the datasets to find the value of the transfer function at zero, 

yielding the Boolean structure of the network without 

computing the entire dynamical structure function.  

Although there are variations to this method that consider 

noisy data, the version employed here is designed to exactly 

reconstruct a network in the idealized setting i.e. for linear 

systems with no noise.  
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A Linear Programming Sparsity Heuristic 

 

Another approach to reconstruction solves a 1-norm 

regression problem to reward sparse structure estimates [5].  

This method is designed for linear and non-linear networks. 

Network structure is formulated as an adjacency matrix       

K of reaction kinetic coefficients.  Treating these 

coefficients as decision variables, structure is derived by 

solving a linear program for each of ten sets of wild-type 

time series data. The final structure estimate is written as a 

probability lookup table, given by  

 

 

 

where the entries of Ki are the estimated reaction coefficients 

of the network, and  denotes the Boolean structure. 

Decision variables kij corresponding to zero entries in  are 

set to be zero and the linear program is solved again for the 

same ten data sets to obtain a richer sparsity structure. In 

addition, entries of the resulting matrix of fractional 

occurrences which are less than a threshold are set to zero. 

 

This linear programming technique was solved using the cvx 

toolbox [10], [13]. 
 

Alternative techniques are described, such as a robust 

formulation for uncertainties in the data and a formulation to 

account for species which could not be measured due to 

technical reasons. These techniques will be the subject of 

future work.  

 

LMI-Based Algorithm for the Reconstruction of 

Biological Networks 
 

This method reconstructs an adjacency matrix A describing 

the network structure among n chemical species satisfying a 

discrete-time system of n difference equations [11], namely   

 

                          

 
where the concentrations of each chemical species is stored 

in the vector  
 

   

Writing the time series data from one wild type experiment, 

as an h dimensional vector,  

 

 

where  

. 

  

The object is to reconstruct the matrix A from experimental 

values (x(h)   …   x(0)). Mathematically this translates into 

minimizing the norm of Ө − AΩ or, equivalently,  

 

 

 

 
 

 

Through the mechanics of Schur complements this nonlinear 

constraint is transformed to the following equivalent, linear 

constraint 

 

 

     

This results in a generalized eigenvalue problem which can 

be solved through the use of such tools as in the Matlab LMI 

Toolbox. The method proposed by these authors also allows 

for a priori knowledge of a biological network to be 

included in the optimization problem. Such information can 

be included in the form 

 

 

 

where uk := [0  …  1  …  0] is a column vector of zeros, with 

a 1 at the k-th position. Also, a zero coefficient can be 

included by simply removing the corresponding variable 

from the problem and substituting it with zero. Furthermore, 

this method not only aims to minimize the interpolation 

error, but also attempts to minimize the number of nonzero 

entries in the A matrix. This is based on the assumption that 

biological networks are generally sparse.  

 

The implementation of this method is then as follows: 

 

1) Solve problem to identify an A matrix from the 

experimental data. 

2) Normalize the A matrix by dividing each of its 

entries by the magnitude of the corresponding row 

and column.  

3) Analyze the normalized matrix. Entries smaller 

than a determined threshold are nullified. 

4) The LMI method is set up based on the resulting 

matrix and a new solution is computed.  

5) Time series data of the new solution is compared to 

that of the experimental data. If the error between 

the two is too big, the method stops. Otherwise, 

another iteration begins at 2). 

 

Numerical Study 
 

We simulated 900 networks with 15 chemical species, 

divided into 9 network categories.  Each network category 

was specified by 2 parameters: p, the total number of 

measured species and SNR, the signal-to-noise ratio.  Using 

the time-series data described above, each method  
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Table 1 

 

reconstructed 900 networks. Based on the results, sensitivity 

(SS) and specificity (SP) scores were calculated by           

 

 

 
The scores are shown in Table 1.  Sensitivity reports the 

percentage of edges correctly predicted and specificity 

reports the percentage of zeros correctly predicted [11].     

 

Our object was to see how performance degraded as the 

noise level in the data increased.  As expected, the exact 

reconstruction method performed well with no noise.  This 

method identified zeros better than edges, partially because 

of implementation issues.  Since we encountered difficulties 

with symbolic matrix inversion, we implemented the steady-

state approach to just recover Boolean structure.  The 

performance dropped significantly with noisy data.  

Additional noise did not lower the performance.    

 

The sparsity heuristic had a high specificity score, reflecting 

its ability to produce sparse solutions.  With higher levels of 

noise, this method faithfully predicted the absence of edges 

and surprisingly predicted the presence of edges with 

increasing accuracy. Research examining how this algorithm 

performs for different levels of sparsity will be explored in 

the future.  

 

The LMI-based algorithm tended to have high sensitivity 

scores, indicating highly connected solutions.  The algorithm 

fits a matrix to the time series data, thus, highly connected 

networks are favored since they have more degrees of 

freedom to fit the data. The transition from noise-free data to  
noisy data was characterized by a significant drop in the 

algorithm’s ability to determine the absence of edges.  

 

With each method, performance dropped as the data became 

noisy.  In the case of the sparsity heuristic and LMI method, 

the drop was only noticeable in the sensitivity and specificity 

categories respectively.  The exact reconstruction technique 

performed noticeably worse in both SS and SP categories 

with the addition of noise.     

 

 

 

 

Conclusion 
 

This paper analyzed the quality of three network 

reconstruction methods under varying levels of noise and 

hidden states. We have found that with the addition of noise 

adversely affected the performance of each algorithm; with 

the most drastic effect on the exact reconstruction method.  

The LMI and sparsity method tended to have either dense or 

sparse solutions, yielding strong sensitivity and specificity 

performance respectively.  

 

Future work will involve implementing the robust 

formulation of the sparsity heuristic, applications of model 

reduction techniques to identify network structure in noisy 

environments, and assessment of these methods for non-

linear systems, varying levels of sparsity, and large 

networks.  
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p SNR LP LMI ER 

 SS SP SS SP SS SP 

9 No noise 0.360 0.828 0.889 0.499 0.709 0.966 

1 0.250 0.902 0.889 0.510 0.520 0.737 

1/100 0.445 0.818 0.901 0.517 0.479 0.754 

12 No noise 0.298 0.762 0.894 0.274 0.740 0.967 

1 0.206 0.851 0.899 0.278 0.492 0.598 

1/100 0.487 0.736 0.878 0.282 0.499 0.606 

15 No noise 0.313 0.789 0.903 0.185 0.985 0.977 

1 0.177 0.866 0.882 0.193 0.503 0.554 

1/100 0.391 0.706 0.897 0.181 0.502 0.570 
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