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Identification and Control of a Grating-Stabilized External-Cavity Diode Laser
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Abstract—Diode lasers have many useful properties and have
found a variety of uses including CD and DVD players, barcode
scanners, laser surgery, water purification, quantum-key cryp-
tography, spectroscopic sensing, etc. Nevertheless, their intrinsic
linewidth or the precision of their emitted wavelengths, is not
good enough for many cutting-edge applications such as atomic
interferometry or high-performance atomic clocks. Using active
feedback control, we can narrow the linewidth of a diode laser
by not allowing the frequency of emitted light to drift away from
a reference value. Nevertheless, such feedback designs are chal-
lenging because of a lack of first principles models and difficult
sensor dynamics. This brief describes our diode laser system and
reports our results identifying the system using black-box tech-
niques, validating the empirical models, and designing controllers
to achieve desired performance while preserving stability and
satisfying implementation constraints.

Index Terms—Frequency control, identification, linear approxi-
mation, proportional control, semiconductor lasers.

1. INTRODUCTION

IODE lasers have some very unique qualities which have
D enabled many scientific and technological advances [7].
Compared to other lasers, they are inexpensive, compact, and
efficient. They typically require little power and usually do not
produce a lot of heat. Their wavelength can be quickly modu-
lated. Diode lasers are also available at many different wave-
lengths, and a given diode can typically be tuned with temper-
ature and optical feedback over several nanometers. Neverthe-
less, the wavelengths of the light emitted by a diode laser can be
relatively broad and tend to drift over time.

Bare laser diodes do not have the stability and narrow
linewidth necessary for many applications such as spectroscopy
and laser cooling and manipulation of atoms. Placing the
diode in an external cavity can reduce the linewidth of a diode
laser, making it suitable for many more applications [7]. The
linewidth can be reduced even more by locking the laser to a
stable reference cavity. Some of the most stable lasers in the
world have been created by actively locking an external-cavity
diode laser (ECDL) to an ultra-high finesse optical cavity, [4],
[5], [8]. In [4], it is noted that a much smaller linewidth is likely
to be achieved through optimized adjustment of the servo amp.
Typically, more attention is given to the components of the
laser than design of the controller [5], [8].
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We have constructed an external-cavity diode laser to use
as the oscillator in a next-generation optical-frequency atomic
clock. To achieve the extreme level of stability required for this
application, we have mounted the laser in a heavy, mechani-
cally isolated box with a large thermal mass, have developed
high-stability, low noise current sources, etc. To cancel out en-
vironmental noise and drift, the laser is locked to an ultra-high
finesse optical cavity, as mentioned above. Using this cavity, we
generate an error signal which we can use for active feedback
control of the laser to keep the wavelength from drifting away
from its reference value.

In this brief, we describe our laser system and discuss the
sensor system that compares the laser’s wavelength to a ref-
erence to generate an error, and define notation for the corre-
sponding closed-loop system. We then describe our identifica-
tion process for the system, which is necessarily black-box and
closed-loop. In this process, we identify two models for the laser
system and characterize the frequency response of an additive
noise disturbance. Finally, we validate our models by comparing
the experimental and theoretical responses to a new controller
design. This experiment allows us to identify bandwidth limita-
tions due to the presence of unmodeled dynamics, thereby char-
acterizing the limitations of our empirical black-box models.
We test these limits by discussing a controller that theoretically
should stabilize the system and deliver excellent performance,
but which excites these unmodeled dynamics. The resulting ex-
perimental implementation is unstable, demonstrating the need
to avoid the unmodeled dynamics. We finally discuss a con-
troller that avoids exciting the unmodeled dynamics while deliv-
ering acceptable performance. The implementation of this con-
troller is stable and provides the expected performance for this
system.

II. SYSTEM DESCRIPTION

Our laser system consists of two main components, the ex-
ternal cavity diode laser (ECDL), a laser diode, and an external
cavity which assists in stabilizing the wavelength of the light,
and the sensor. The ECDL configuration that we are using is
the Littrow configuration as illustrated in Fig. 1. Our configura-
tion is explained in detail in [6]. In spite of the external cavity
diode laser’s ability to generate a strong, sharply defined optical
mode, thermal, electrical, and mechanical noise cause the color
or wavelength of this mode to drift over time. This makes the
ECDL unsuitable for applications such as atomic interferom-
etry and high performance atomic clocks. However, the ECDL
configuration enables the possibility of stabilizing the drifting
wavelength using feedback control.

The wavelength of the light cannot be measured directly, so
we use the Pound-Drever—Hall method [1]-[3] to generate a dc
error signal based on the deviations of the laser’s wavelength
from a reference wavelength. A diagram of our setup is shown in
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Output

Fig. 1. Littrow configuration. Changing the wavelength of the laser is accom-
plished by either rotating the grating, sliding the grating to change the length of
the cavity, or changing the effective refractive index of the diode.
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Fig. 2. Pound-Drever—Hall method of generating an error signal between a
laser’s emission and a desired wavelength, characterized by a particular optical
cavity. (a) Diagram of our setup. (b) Magnitude of the error signal generated by
our setup is shown as the wavelength of the laser is swept through a cavity res-
onance. The wavelength of the laser matches the cavity resonance in the center
of the plot where the magnitude crosses zero; this is where the laser’s output
matches the reference. There is a small region centered around this point where
the error signal behaves linearly. The slope and width of this section is deter-
mined by the fidelity of the cavity: a higher fidelity cavity creates a steeper and
more narrow region. Just beyond these wavelengths, error rapidly approaches
zero, causing the system to lose observability and effectively go to sleep. If the
laser’s wavelength is far enough from equilibrium, the error switches sign and
the controller will drive the laser away from equilibrium.

Fig. 2(a). Anillustration of the magnitude of the error signal pro-
duced by the Pound—Drever—Hall sensor as the laser is detuned
from cavity resonance is shown in Fig. 2(b). The Pound-Dr-
ever—Hall mechanism behaves linearly only for a tiny band of
wavelengths near the reference command. Outside of this re-
gion, the error signal quickly goes to zero even though the laser
wavelength is not close to the reference command. Once this
happens, the system will effectively lose observability since the
sensor will report zero error from the desired wavelength when,
in fact, the error may be significant.

A block diagram of the feedback system is given in Fig. 3.
We will specify five systems, P, Pr, Ps, Wy, and K, with
P = PrPs. Py, is the ECDL, Ps is the Pound-Drever—Hall

Fig. 3. Diagram of the closed-loop system.

frequency sensor, as described previously. The sensor consists
of all the components the light enters after being reflected by the
first beamsplitter in Fig. 2(a). The system W} shapes the noise
entering the system and is determined experimentally. The con-
troller is denoted as K.

Several signals are also represented in Fig. 3. A(¢) is the wave-
length of the light exiting the laser and is represented in Fig. 2(a)
as the light that is not reflected by the first beamsplitter. We want
this signal to stay as close as possible to the reference wave-
length 7(t), which is determined by the length of the optical
cavity in the sensor. The signal e(t) is the error as measured by
the sensor. The signal n(t) is white noise entering the system,
d(t) is an artificial disturbance signal intentionally added by us
for system identification, and u(t) is the input to the laser. The
signals that we can measure are d(t), u(t), and e(t).

III. IDENTIFICATION OF THE LASER SYSTEM

One of the aspects of this system that makes identification
difficult is the absence of first principle models for each compo-
nent that we can easily interconnect and parameterize to create
a complete model. Nevertheless, effective controller design
demands some understanding and model of the system to
guide its development. Thus we turn to black-box identification
methods to generate a coarse, linear time invariant control-ori-
ented model of the system. This model will be described in two
pieces: the ECDL/PDH system and the noise model.

A. Identification of the ECDL/PDH System

Black-box identification methods are challenging for the
ECDL/PDH system because the Pound—Drever—Hall detection
technique, which effectively compares the system output with
a desired response and generates an error (see Fig. 3), operates
linearly in only a very narrow region near equilibrium. Outside
this region, the error appears to go to zero when, in fact, it
remains decidedly non-zero, and the system effectively loses
observability. Moreover, since the amplitude of typical noise
in the system easily perturbs it outside this linear regime, it
is essential to use feedback to attenuate noise and control the
system when collecting measurements. As a result, closed-loop
identification is essential, even though we have no models to
guide the design of this initial stabilizing controller. Neverthe-
less, through workbench trial-and-error, we obtained such a
controller and were able to subsequently collect data for system
identification.

The idea behind our identification experiments was to excite
the stabilized, closed-loop system with sinusoids of different
frequencies and measure the resulting magnitude and phase of
the response. We would then fit these points in the frequency
domain with the response of a rational transfer function, and
use this transfer function as our model of the system.
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Fig. 4. Magnitude measurements from a single frequency scan to characterize
the laser system. At about 10* rad/s, we notice some dynamics where the mag-
nitude dips and comes back up. After 10° rad/s the magnitude begins to roll off
at a rate of 40 dB/dec.

We began by selecting roughly twenty sample frequencies
ranging from 1 kHz to 3 MHz. For each frequency, w, we in-
troduced our sinusoidal disturbance d(t) as an additive perturba-
tion on the current signal, u(t), driving the external-cavity diode
laser. We then measured the resulting error signal e(¢) pro-
duced by the Pound—Drever—Hall detection mechanism. Using
a fast Fourier transform on these signals, we were thus able
to measure |U(jw)| and |E(jw)|, and calculate |Pp(jw)| =
|E(jw)|/|U(jw)]|. To determine the phase of the laser system,
we measured the time delay of the sinusoid, 6(w) from u to e.
We then calculated the phase in degrees as /Py (jw) = 360w *
8(w). Having completed a scan over the entire range of frequen-
cies, we then repeated the experiments 25 times to ensure we
captured sufficient data to make meaningful fits and reduce the
impact of experimental error.

Fig. 4 shows the measurements obtained for one of the 25
scans. Noting that the system rolls off at 40 db/dec, the simplest
model to fit the data would be a second-order system. Fitting
such a system, we obtain

3.278e12

P = -
> (s +2.53¢5)?

and observe its fit to all of the scan data in Fig. 5(a).

To obtain a higher fidelity model, we note in Fig. 4 the slight
dip and hump around 10-20 and 50-60 krad/s, respectively.
Using a fourth-order model to capture this feature, we find

1.071e13(s2 + 3.197¢4s + 3.044¢8)
(s + 1.674¢6)(s + 1.105e5)(s + 3.228¢e4)(s + 9931)

Py =

and observe its fit to all of the scan data in Fig. 5(b).

These models appear to capture much of the dynamic infor-
mation about the laser system obtained through our black-box
identification experiments. In particular, however, we note that
the quality of fit of both models appears to deteriorate signifi-
cantly at frequencies higher than 10° rad/s. The second-order
model exhibits strong deviations in it’s magnitude response,
while the fourth-order model exhibits strong deviations in its

50 T T T T T
i<}
A=k
£ O it
[ PR .
© Measured Response| :
2" order model :
-50 2 3 4 5 3 7
10 10 10 10 10 10
Frequency (rad/sec)
100 T
a E
£ 100 -
o :
-200 . ‘s IA I5 .is 7
107 10 10 10 10 10
Frequency (rad/sec)
60
_ aofei
o T
T .
£ -
] - - - —t - .
o ok Measured Response|..
4™ order model
-20 2 3 4 I.5 7
10 10 10 10 10
Frequency (rad/sec)
100
g o
a .
£ 00F -3
o Vo
-200 ——= " S
107 10 10

Frequency (rad/sec)

(b)

Fig. 5. Open loop models of the ECDL/PDH system plotted against the mea-
sured response of the laser from « to e. (a) Second-order model. (b) Fourth-order
model.

phase response. We will see later that this high frequency limi-
tation to our models, indicating the presence of unmodeled dy-
namics in this range, contributes to bounds on our achievable
closed-loop performance.

B. Identification of the Noise Model

Considering discrepancies in the model to be explained by
additive noise on the error signal generated by the Pound—Dr-
ever—Hall system, we developed a frequency weight model of
this discrepancy. Given a stabilizing controller, the idea was
that any deviation from equilibrium would be explained by this
model. Thus, measuring the error signal when the closed-loop
system should be in equilibrium allows us to factor out the
impact of the controller, K, and the laser system, P, yielding
Wy = (1+ PK)E/N. Here, we assume that n is unit intensity
white noise. We repeated this process 30 times to compare the
results of a single experiment with the experimental average.
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Fig. 6. Frequency weight on noise, Wy, chosen to conservatively cover exper-
imental values.
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Fig. 7. FFT of the power spectrum of the signal measured at the photodetector
while the laser is locked. Note the center spike corresponds to our modulation
frequency of about 32 MHz.

Fig. 6 demonstrates the results of these measurements, along
with the frequency response of a conservative bound we used as
our noise model, given by

1.339¢19s + 4.717¢25
s% 4 1.488¢e7s3 + 7.32e1452 + 6.936e21s

Wo =

Fig. 7 demonstrates the corresponding Pound-Drever—Hall de-
tector (output) signal for one experiment, as well as for the en-
semble average over all 30 experiments. Note the resonant spike
corresponding to the equilibrium frequency of the laser locked
to the high fidelity optical cavity of the Pound—Drever—Hall
mechanism. Equipped with these models of the laser system and
its corresponding frequency-weighted noise distribution, we are
now prepared to begin systematic validation experiments and
controller design.
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Fig. 8. Measurements with comparisons to our models for PID1. (a) Closed-
loop Bode plot from d to e of both models with X' = PID1 compared to the
measured closed loop response from d to e. (b) Open-loop bode plot of the
model of PID1 compared with measured values of the open-loop response of
the actual controller.
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IV. VALIDATION AND CONTROLLER DESIGN

The process for experimentally verifying our black-box
models of the system was relatively simple. Essentially, since
all measurements on the system had to be closed-loop measure-
ments, our options were to use the identified models to design
other stabilizing controllers with wildly different closed-loop
responses and then compare the theoretical response of the
models with the experimental response of the implemented
system. Discrepancies between theoretical or simulated re-
sponse and experiment could be attributed to modeling error,
provided we did not make a mistake when implementing the
intended controller design. To protect against this possibility,
we also directly and separately measured the response of
the controller to verify that the implementation was, in fact,
behaving as designed. That is, for each controller, we verified
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Fig. 9. Open-loop bode plots of Py K with PPy being the second-order model.
This figure illustrates the high open-loop gain of PID2 relative to PID1. While
both controllers are stablizing with respect to the model, PID2 excited unmod-
eled dynamics and was unstable in practice.

its open-loop response independently from the closed-loop
experiments. Thus, experimental discrepancies from theory
could confidently be attributed to unmodeled dynamics of the
laser system and not to the controller.

A key limitation in this process, however, was the fact that the
feedback controllers were all implemented in analog circuitry,
so changing controllers with very different structure would re-
sult in significant implementation costs. As a result, we were
restricted to designing PID controllers with the following struc-
ture:

K. K
K:Kt<Kp+ + ‘”).

i
S S+ T4

Moreover, we were further restricted by our desire to measure
the response of the controller directly. As a result, we needed
to introduce a limiting resistor on the integrator in order to keep
low frequency gains at a reasonable level when independently
measuring the controller’s open-loop response. Thus, although
we would implement the PID controller with structure as given
above in the closed-loop system, we would validate a perturba-
tion of the controller itself by introducing the resistor 7; corre-
sponding to the following structure:
K ds
s+ 'rd> ’

In all our designs 75 < 1€9 and 7; = 3.03e4.

Fig. 8 shows the results of a validation experiment. We de-
signed a controller, using the indentified black-box models of
the system, that would generate a particular resonant frequency
and be easy to implement. This response was achieved by re-
moving the proportional control from the existing experimental
controller to create PID1 with gains of K; = 5.4, K, = 0,

S+ T;
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Fig. 10. Measurements with comparisons to our models for PID3. (a) Closed-
loop Bode plot from d to e of both models with ' = PID3. (b) Open-loop
Bode plot of the model of PID3 compared with measured values of the open
loop response of the actual controller.

K; =7.0126e3, K; = 94.0171, and 74y = 8.547¢8. The corre-
sponding transfer function is given by

0.8471s? + 63.18s + 5.4¢10

PID1 =
0.001669s2 + 1.426¢6s

Measuring the closed-loop gains from d to e of sinusoidal distur-
bances at 30 distinct frequencies, the plot compares these exper-
imental values with the theoretical response of the system using
both the second-order model and the fourth-order model [see
Fig. 8(a)]. Moreover, we compare the experimental and theoret-
ical response of the controller in Fig. 8(b). Noting that the con-
troller appears to be implemented well, then we conclude that
models are good descriptions of the actual system up to about
w = 108, after which high frequency unmodeled dynamics ap-
pear to be present in the system.
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Fig. 11. Comparison of the theoretical noise attenuation performance of PID2
and PID3. We show the closed-loop bode plot comparison from n to e using
the second-order model of the system. PID3 sacrifices nominal performance in
order to avoid unmodeled dynamics and gain robust stability.

To test how strongly the presence of these high frequency
unmodeled dynamics would affect controller design, we next
consider a controller that excites frequencies past w = 106,
Such a controller, PID2, is given by K; = 5.4, K, = 3.04,
K; = 3.94e4, K; = 8.09¢e3, with 74 = 1e9, with transfer
function

4.371e4s% + 1.639e10s + 2.13e14

PID2 =
2 4+ 1e9s

Fig. 9 demonstrates the open-loop gain PK for PID2 com-
pared with those for PID1. Note that PID2 exhibits high gain
at frequencies well beyond w = 10°. If either of the black-box
second- and fourth-order models were perfect, PID2 would sta-
bilize the system. Moreover, the performance of the closed-loop
system in terms of noise attenuation would be superb. Never-
theless, when we implemented PID2 we found the closed-loop
system to be unstable. From this, we learn that the unmodeled
dynamics beyond w = 10° are not benign and should not be
excited in a working control design.

Having validated our models of the laser system and having
developed some understanding of their limitations past frequen-
cies of w = 106, we finally consider the design of a working
controller. The primary objective of the controller is to atten-
uate noise as much as possible. Nevertheless, in doing so we
recognize that we are constrained by our desire not to excite the
unmodeled dynamics in the system. Such a controller is given
by PID3 with gains K; = 5.4, K, = 0.0443, K; = 3.778e3,
K4 = 25.6410, with 74 = 8.547¢8 and transfer function

0.4296s2 + 6.333¢5s + 5.4¢10

PID3 =
0.0030975s2 + 2.647e6s

Fig. 10(a) compares the theoretical and experimental closed-
loop responses from d to e, while Fig. 10(b) presents the results
of the controller validation experiments. Note in part a that the
closed-loop response is rolling off rapidly after w = 106, thus

respecting our constraint not to excite the unmodeled dynamics
and preserve stability. Nevertheless, we note in Fig. 11 that the
noise attenuation of PID3 is substantially worse than that which
would be theoretically possible for PID2. This leads us to the
conclusion that this deterioration in performance is necessary to
preserve system stability, given the coarse understanding of our
system captured in our black-box models and our constraints on
admissible controller structure. To achieve better performance,
we would need to either relax our implementation constraints
on the PID structure of the controllers, allowing, for example,
more advanced control techniques, or we would need invest in
the development of higher fidelity models of the laser system
to understand dynamics of the system beyond frequencies w =
106.

V. CONCLUSION

In this study, we have explored the identification and con-
trol of a grating-stabilized external-cavity diode laser using
a Pound-Drever—Hall mechanism to generate an error signal
comparing the actual laser output with a desired reference
wavelength. We used black-box identification techniques due to
the complexity of our system and the absence of first-principle
models. The identification process was necessarily closed-loop
because of nonlinear effects associated with the Pound-Dr-
ever—-Hall mechanism as an error sensor. Nevertheless, we
obtained two linear models of the laser system that captured
the prominent dynamics up to about 10° rad/s. Moreover, we
characterized the frequency response of the resulting model
discrepancy to use as a noise model to help guide feedback
design. We then validated these models by designing new
controllers and comparing the theoretical, simulated response
to the actual, experimental response. The first experiment
demonstrated the utility of our models up to 10 rad/s. The next
experiment demonstrated the need to avoid exciting dynamics
above 106 rad/s by illustrating a controller that was theoretically
stabilizing with respect to our models but was, in fact, unstable
in practice. Finally, we use this insight to demonstrate the
utility of a stabilizing controller that avoids exciting unmodeled
dynamics while delivering acceptable noise attenuation for the
system.
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