
Network Structure Preserving Model Reduction: Results of a Simulation Study
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Abstract— Reconstructed models of biochemical networks of-
ten reflect the high level of complexity inherent in the biological
system being modeled. The difficulties of predicting gene ex-
pression and analyzing the effects of individual perturbations at
a system-wide resolution are exacerbated by model complexity.
This paper extends a state projection method for structure
preserving model reduction to a particular model class of recon-
structed networks known as dynamical structure functions. In
contrast to traditional approaches where a priori knowledge
of partitions on unmeasured species is required, dynamical
structure functions require a weaker notion of system struc-
ture, specifying only the causal relationship between measured
chemical species of the system. The resulting technique, like
similar approaches, does not provide theoretical performance
guarantees, so an extensive computational study is conducted,
and it is observed to work fairly well in practice. Moreover,
sufficient conditions, characterizing edge loss resulting from
the reduction process, are presented.

I. INTRODUCTION

Simplified representations of biological systems play an
important role in simulating and controlling their underlying
dynamic phenomena. This can be especially true in situations
where the underlying system is large and structured in a
complex network of interconnections.

For such networks, the input-output dynamics alone may
not be an adequate measure of the strength of a reduced
order model. System structure may be an equally important
characteristic for understanding, or controlling the system
since, for example, only distributed interaction may be feasi-
ble. In this case, model reduction must not only approximate
the dynamics of the system, but it also must reflect a priori
knowledge of the system structure to the extent possible.

Unfortunately, traditional approaches to model reduction
focus only on dynamic approximation and do not gener-
ally preserve interconnection structure. Nevertheless, recent
work has considered this issue, and a number of structure-
preserving methods have been presented in [5], [10], [1],
[7], [8], [9]. These methods, however, all assume that the
structure of the complex system is known a priori in a very
strong sense. In particular, a partition of the entire state space
is assumed to be known, enabling a decomposition of the
system into the interconnection of a finite set of subsystems.
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However, when modeling a chemical reaction network of a
biological system, assuming a priori knowledge of a partition
over the entire state space of the complex system could
be unreasonable. For example, one may not even be aware
of many of the chemical species involved in intermediate
reactions, much less their reaction pathways. As a result, it
could be unreasonable to expect that one would know how
to meaningfully partition all of the states of the system into
distinct subsystems. In these situations, a weaker notion of
a priori structural information is necessary to formulate a
meaningful structure-preserving model reduction problem.

A weaker notion of system structure has been developed
in the context of the network reconstruction of biochemical
systems [3]. This notion of structure is characterized by
a factorization of a system’s transfer function, called the
dynamical structure function, and it characterizes the causal
relationship between measured chemical species and inputs
without imposing any particular structural form on the rest
of the system. This paper formulates the structure-preserving
model reduction problem assuming only weaker a priori
structural information, as characterized by the dynamical
structure function of the system. A state projection technique
similar to that in [9] is then applied, and it is found to deliver
reduced models with good dynamic fidelity. Nevertheless,
unlike situations where strong a priori structural informa-
tion is available, the technique is shown to not necessarily
preserve structure in the weaker sense, and conditions for
structure preservation are then provided.

II. BACKGROUND: CHARACTERIZING STRUCTURE

This section compares and contrasts different ways of
characterizing partial structure information of the system.
First, note that complete structural information is char-
acterized by the state-space equations describing how the
system actually computes its outputs given the input and
initial conditions; we call this the complete or computational
structure of the system. We next discuss strong partial
structure information vs. weak partial structure information
of the system and show that, the type of a priori information
requirements they impose are very different.

A. Strong Partial Structure Information

One way to encode partial structure information about a
system is to decompose the composite system into q + 1
distinct subsystems. One of these subsystems, N(s), is a
special module that characterizes the system structure and
interconnects the other q subsystems; the others, Gi(s), i =
1, 2, ..., q, are completely distinct and decoupled and do
not interact except through N(s). In this setting, replacing
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any subsystem Gi(s) with another system, Ĝi(s), preserves
the composite system structure, as encoded in N(s), as
long as the dimensions of the inputs and outputs of Ĝi(s)
conform to the ports made available by removing Gi(s). The
mathematical representation of the composite system then
becomes the lower fractional transformation of the system
N(s) and a block diagonal system G(s), Fl(N,G), with
Gi(s) on the ith block of G.

The strong sense of structural understanding required by
this definition of structure is a global partition on all the
states of the complex, composite system resulting in the
diagonalization of G. Other names for this strong type of
partial structural information include subsystem structure or
the solid-state structure of the system.

B. Weak Partial Structure Information

The notion of weak partial structure does not require
knowledge or existence of a global partition of all system
states in order to be meaningful; rather, it characterizes the
network of interactions among measured chemical species
and inputs as causal relationships.

The mathematical representation of the weak partial struc-
ture of a system employs a pair of matrix functions, similar
to transfer functions, called the dynamical structure function
of the system.

To see how the dynamical structure function is derived,
consider the system given by:[

ż1
ż2

]
=

[
Ā11 Ā12

Ā21 Ā22

] [
z1
z2

]
+
[
B̄1

B̄2

]
u

y =
[
C̄1 C̄2

] [ z1
z2

]
+
[
D̄
]
u

(1)

where
[
z′1 z′2

]′ ∈ Rn, is the full state vector with z1 ∈ Rp,
y ∈ Rp (p < n) are the measured outputs, and u ∈ Rm

is the control input. Without significant loss of generality,
we assume

[
C̄1 C̄2

]
has full row rank and D̄ = 0 (these

assumptions simplify the exposition but do not restrict the
results). We first consider the change of basis on the state
variables yielding:[

ẏ
ẋ

]
=

[
A11 A12

A21 A22

] [
y
x

]
+
[
B1

B2

]
u

y =
[
I 0

] [ y
x

]
.

(2)

Taking Laplace Transforms of the signals in (2), we find[
sY
sX

]
=

[
A11 A12

A21 A22

] [
Y
X

]
+
[
B1

B2

]
U (3)

Solving for X , gives

X = (sI −A22)−1
A21Y + (sI −A22)−1

B2U

Substituting into the first equation of (3) then yields

sY = WY + V U

where W = A11 + A12 (sI −A22)−1
A21 and V =

A12 (sI −A22)−1
B2 + B1. Let D be a matrix with the

diagonal term of W , i.e. D = diag(W11,W22, ...,Wpp).
Then,

(sI −D)Y = (W −D)Y + V U

Note that W −D is a matrix with zeros on its diagonal. We
then have Y = QY + PU where

Q = (sI −D)−1 (W −D) (4)

and
P = (sI −D)−1

V. (5)

The matrix Q is a matrix of transfer functions from Yi

to Yj , i 6= j, or relating each measured signal to all other
measured signals (note that Q is zero on the diagonal).
Likewise, P is a matrix of transfer functions from each input
to each output without depending on any additional measured
state Yi. Together, the pair (Q(s), P (s)) is the dynamical
structure function for the system (1).

Note that when discussing the structure of a system, it
is often convenient to distinguish between the dynamical
structure, given by (Q,P ), and its network structure, char-
acterized by the Boolean structure of (Q,P ). The Boolean
structure of a matrix function Q is simply a matrix B(Q)
with elements B(Q)ij = 0 if and only if Qij = 0, otherwise
B(Q)ij = 1. The network structure of a system is thus given
by B(Q,P ).

III. PROBLEM FORMULATION

Realization problems transition to model reduction prob-
lems when the order of the representation is reduced be-
yond some threshold: systems with order greater than this
threshold can exactly produce the desired behavior, while
those with order less than the threshold must approximate
the desired behavior. The context for model reduction is
thus characterized by the minimal threshold defining this
transition. This motivates the following definition.

Definition 3.1: Given a structure (Q,P ) of the transfer
function G, with G = (I −Q)−1P , then a realization of G
with order n is dynamically minimal if every realization of G
has order n̄ ≥ n, and it is structurally minimal if it generates
(Q,P ), in the sense of satisfying (2)-(5), and if every other
realization that generates (Q,P ) has order n̄ ≥ n. We call
the order of a dynamically minimal realization the degree of
the system, and the order of a structurally minimal realization
the structural degree of the system.

With this notion of minimal model complexity, the prob-
lem we want to solve then becomes:

Problem: Given a system G with dynamical structure
function (Q,P ) and structural degree n, for a non-negative
integer ñ < n, find an approximate system G̃ with dynamical
structure function (Q̃, P̃ ) and structural degree ñ such that

1) B(Q̃, P̃ ) = B(Q,P ), and
2) G̃(s) = arg min ‖G− G̃‖∞.
This research does not solve this problem.
Nevertheless,we demonstrate that a state projection reduc-

tion method known to preserve structure in the strong sense
(when it exists) can be adapted to perform reasonably well
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Q Size Connectivity Chop Unstable n p States Chopped Edges in Q Edges Lost Scaled Error
Small Sparse Low 4% 19.8 2.3 3.7 2.6 0 ε
Small Sparse Med 6% 22.4 2.66 10.2 3.3 0 .0609
Small Sparse High 0% 20.0 2.5 12.2 2.8 0 0.0119
Small Mid Low 0% 20.5 2.8 3.7 5.2 0 ε
Small Mid Med 0% 22.7 2.7 10.8 4.1 0 ε
Small Mid High 0% 21.6 3.1 12.9 5.9 .5 .0184
Small Dense Low 0% 29.1 4.2 4.9 14.6 0 ε
Small Dense Med 2% 27.1 4.1 12.6 13.6 0 ε
Small Dense High 4% 29.4 4.2 18.1 14.8 0 .0060
Med Sparse Low 0% 22.2 6.3 3.7 21.2 0.1 .0014
Med Sparse Med 0% 22.5 6.7 3.8 13.2 0 ε
Med Sparse High 0% 25.01 6.7 13.1 11.8 1.9 .0140
Med Mid Low 2% 25.7 3.7 4.1 11.1 .2 .0075
Med Mid Med 0% 22.5 6.4 9.0 23.3 0 .0106
Med Mid High 0% 23.3 6.6 11.6 23.4 .5 .0028
Med Dense Low 0% 25.9 7.8 3.6 60.2 0 .0303
Med Dense Med 0% 28.1 8.0 10.2 62.2 0 .0959
Med Dense High 0% 24.7 7.2 12.4 49.7 0 .3147
High Sparse Low 0% 22.1 10.0 2.9 23.8 0 ε
High Sparse Med 0% 23.5 10.0 7.3 19.5 0 .0081
High Sparse High 0% 18.6 2.2 11.0 2.46 0 .0863
High Mid Low 0% 20.2 9.0 2.6 49.6 0 ε
High Mid Med 0% 20.6 8.9 6.5 44.5 2.0 .0013
High Mid High 0% 23.3 6.6 11.6 23.4 .5 .0028
High Dense Low 0% 24.4 11.1 2.8 130.5 0 .0588
High Dense Med 0% 27.1 12.0 8.3 145.1 0 .0085
High Dense High 0% 26.8 11.3 10.2 133.2 0 .0375

TABLE I
RESULTS FROM THE COMPUTATIONAL STUDY

with only weak structural information. Moreover, although
it does not necessarily preserve structure in the weak sense,
conditions for when it fails to do so are provided. The
next sections describe the method, empirically explore its
performance, and analyze its ability to preserve structure as
described by the Boolean structure of (Q,P ).

IV. STRUCTURED BALANCED TRUNCATION

Standard approaches to the unstructured version of the
above problem, such as Hankel norm approximation or bal-
anced truncation, are suboptimal in the H∞ sense. Likewise,
the approach taken here is also suboptimal, and it is an
extension of balanced truncation adapted to accommodate
system structure.

We apply a strong structure technique from [9], writing
the system (2) as the linear fractional transform of two sub-
systems, one subsystem representing the measured variables
y and one subsystem representing the hidden variables x.
The technique prescribes a block diagonal transformation to
balance diagonal blocks of the controllability and observ-
ability gramians. It can be shown that such a structured
transformation always exists and is unique, generating a
local change of basis within each subsystem such that the
resulting controllability gramian and observability gramian
have a particular structure, with diagonal blocks that are
1) equal, 2) diagonal, 3) positive semidefinite, and 4) with
entries ordered from largest to smallest within the block–
while the off diagonal blocks have no particular relationship
or structure.

The structure preserving model reduction method de-
scribed above preserves structure in the strong sense, see

[9], [5], [11], [6], [9]. As there are few theoretical guar-
antees characterizing how the weak structure of a system
is preserved, the next section presents the results of an
extensive computational study exploring the performance of
the procedure for a variety of systems.

V. RESULTS FROM A COMPUTATIONAL STUDY

Since the state projection technique for reduction sug-
gested in the previous section does not necessarily preserve
stability of a system, nor provide bounds on the dynamic
fidelity of the reduced model, nor guarantee structure preser-
vation in the weak sense, we engaged a computational study
to explore the performance of the technique. The results
of the study are displayed in Table 1. First, note that
although instability is possible, it was rare to lose stability
through truncation. Although this may have been affected
by our use of diagonally dominate A matrices in the system
realization when generating stable random systems, it is still
encouraging to note that even without stability guarantees the
procedure generally delivers stable reduced order models.

Second, we observe that although weak structure was
preserved most of the time, an average as high as 15% of the
edges in Q can be lost by the procedure. This motivates the
characterization of edge loss discussed in the next section.

Finally, the dynamic fidelity of the procedure appears to
be excellent. Although one category reports an average error
as high as 30% of the norm of G, generally the error is well
below 1−3%. Note that ε refers to values smaller than 10−3.

VI. SUFFICIENT CONDITIONS FOR EDGE LOSS

It is easy to understand how an edge may be lost through
the reduction process. If, for example, the edge connecting
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two measured outputs y1 and y2 is realized through a hidden
state xn, so that y1 −→ xn −→ y2, and that hidden state is
eliminated in the truncation process, then we would expect
the edge not to be present in the network structure of the
reduced model. These observations lead us to the following
characterization of edge loss.

Definition 6.1: A realization of the form (2) is hidden
balanced if its controllability and observability gramians
(with block structure conformal to the partition in (2)),

Xc =
[
Xc11 Xc12

Xc21 Xc22

]
, Yo =

[
Yo11 Yo12

Yo21 Yo22

]
,

satisfy Xc22 = Yo22 = Σ, were Σ > 0 is diagonal.
Theorem 6.1: Given a system G with network structure

B(Q,P ) and a hidden balanced realization given by ẏ
ẋ1

ẋ2

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 y
x1

x2

+

 B1

B2

B3

u
y =

[
I 0 0

]  y
x1

x2

 ,
(6)

where x1 and x2 partition the hidden states of the system. Let
aT = [aT

2 aT
3 ] be the ith row of [A12 A13], b = [bT2 bT3 ]T

be the jth column of [AT
21 AT

31]T , and T2 be the unitary
transformation constructing the Schur form of A22. Consider
the system G̃ with network structure B(Q̃, P̃ ) and hidden
balanced realization given by[

ẏ
ẋ1

]
=

[
A11 A12

A21 A22

] [
y
x1

]
+
[
B1

B2

]
u

y =
[
I 0

] [ y
x1

]
,

(7)

obtained by truncating x2 from the system (6). Then an edge
in the ijth position is lost as a result of truncation, meaning
[B(Q)]ij = 1 and [B(Q̃)]ij = 0, if [A11]ij = 0, [B(Q)]ij =
1, and the matrix T2a2b

T
2 T
∗
2 is lower triangular with zero on

the diagonals.
This theorem characterizes sufficient alignment conditions

for an edge to be lost through the truncation process dis-
cussed in this paper. A proof of this theorem can be found in
[2]. Although as a practical matter it may be easy to compute
B(Q̃, P̃ ) and directly compare it with B(Q,P ) to detect
edge loss, these conditions help distinguish situations where
truncation is guaranteed to simplify the dynamical structure
of the reduced order model.

This loss of edges can actually be valuable in situations
where a structured system is identified from noisy data.
In these situations, network reconstruction algorithms will
find fully connected structures fit the data as well or better
than sparse structures. As a result, there is a tendency to
overestimate structure, and many approaches actively work to
compensate for this tendency by explicitly rewarding sparsity
of the estimate [4].

The alignment conditions provided in Theroem 6.1 offer
the hope for a new approach to this problem by using

model reduction to both simplify the dynamic expression of
a model and to purposefully simplify the structure estimate,
eliminating only those edges that result from noise. Future
work will explore these issues.

VII. CONCLUSION

This paper extended a state projection technique for struc-
ture preserving model reduction to situations where only a
weak notion of system structure is available. Strong partial
structure information and weak partial structure information
were defined and compared, An extensive computational
study of the reduction process was conducted, demonstrat-
ing that it typically performs well in spite of the lack of
theoretical guarantees on stability or performance bounds.
Nevertheless, the technique does not always strictly preserve
structure in the weak sense, and sometimes a reduced model
may lose edges compared with the network structure of the
original system. Sufficient conditions for edge loss were then
provided, demonstrating certain alignment properties that
reveal how this approach to model reduction may contribute
in the future to network reconstruction from noisy data.

REFERENCES

[1] C. Beck, J.C. Doyle, and K. Glover. Model reduction of multidi-
mensional and uncertain systems. IEEE Transactions on Automatic
Control, 41(10):1466–1477, October 1996.
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