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ABSTRACT

VALIDATION OF DYNAMICAL STRUCTURE FUNCTIONS FOR

THE RECONSTRUCTION OF BIOCHEMICAL NETWORKS

Taylor Southwick

Department of Computer Science

Bachelor of Science

The past decade has seen huge leaps in the ability of biologists to gather biochem-

ical data, but slow progress in the ability to understand what that data means.

Network reconstruction algorithms aim to decipher the underlying dynamics and

structure of a system. Dynamical structure functions (DSF) have been shown to

work well in preliminary studies and is explored in this thesis as a viable alternative

to other major methods available. Comparisons are made to two major methods,

BANJO and VBSSM, using in silico data derived both from synthetic networks

and from a mathematical model of an in vitro system developed in yeast (Saccar-

omyces cerevisiae) known as IRMA. Results indicate that DSF tends to outperform

the other two overall, while VBSSM is slightly better at finding connections and

BANJO tends to find slightly more non-connections. For general purpose de novo

network inference, DSF should be used to ensure the highest confidence in resulting

network topology.
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Chapter 1
Introduction

During the past decade, the production of biological data has increased to such

a high point that researchers struggle to effectively use all of it. There are cur-

rently many high-throughput technologies that can yield large volumes of data.

DNA sequencing, protein mass spectrometry, and other techniques to measure bi-

ological properties have seen an increase in use as they become more efficient and

affordable. As technology has improved, the ability to measure dynamic processes,

instead of static snapshots, has become easier and more common place. A key to

unraveling the dynamic nature of biological systems is to understand the underlying

structure.

Any biological application with this new data requires an understanding of the

way that the components in a system interact. These applications range from cur-

ing metabolic disorders to increasing the yield of a strain of corn in new climates.

Researchers use this information to build models and to plan the next phase of

their research. This form of experimentation has become more common among re-

searchers, but requires the understanding of the complex structures that coordinate

the reactions in the organism.

The structure of a biochemical system is the network of interconnected chemical

species. Common chemical species include DNA, proteins, and lipids. The networks

1



2 Chapter 1. Introduction

they form within a system can serve different functions, from producing new pro-

teins via DNA transcription and translation in gene regulation networks, to sending

a signal through a cell via signal transduction networks. These species form com-

plexes (units composed of two or more individual chemical species) which then can

catalyze certain chemical reactions which would not have otherwise occurred.

Complexes like this, as well as many more, run the entire biological process in ev-

ery living organism. A common complex is that formed between DNA polymerase

(a protein) to a strand of DNA which then initiates transcription. Another com-

plex that is often found in signal transduction networks is a protein and a kinase

or phosphatase, which will, respectively, add or remove a phosphate group an in-

organic chemical marker. The connections they make are often unique and highly

specific. They are key to understanding systems within an organism. The algo-

rithms that attempt to recover, or infer, these connections are known as network

reverse-engineering or reconstruction algorithms.

The problem of identifying the underlying structure of a network has interested

many people in the field of biology. The number of algorithms that claim to recon-

struct network structure increases every month as new ideas are tried. As this num-

ber increases, it is important to validate that an algorithm performs better than its

predecessors; otherwise, there would be no novel use for it. This thesis provides an

in silico comparison of two major network reconstruction algorithms, BANJO and

VBSSM, to a novel technique called Dynamical Structure Functions, DSF. First,

a review of research in the field will be provided. This will then be followed by a

detailed explanation of these three methods and then a description of the model

systems that were used in this comparison. Following this, the results will be shown

followed by a concluding discussion to follow.



Chapter 2
Literature Review

The majority of research relating to network reconstruction has been within the

past decade, as the amount of data needed before that was not available. After the

sequencing of the human genome, followed by many other organisms, people wanted

to know what this sequence of three billion base pairs did. Thus, dynamic data of

different kinds of cells began to appear. The majority of this was attained with

microarrays as this allows for thousands of gene concentrations to be measured at

one time. This was followed by advancements in mass spectrometry that allowed

for high resolution dynamic data of the protein concentrations in cells (known as

the proteome) to be obtained. The deluge of data is enormous and much important

information about biological processes can be gleaned from it.

The first attempt at network reconstruction was built off of correlation studies.

Correlation became an important way of understanding possible causation almost

a century ago when Pearson published his method of finding the correlation coef-

ficient (often termed r in statistics) of a given dataset (Aldrich, 1995). One of the

issues with this is that direct and indirect connections are extremely difficult to re-

solve (Almudevar et al., 2006; Tenenhaus et al., 2010). Some methods have found

ways around this by employing certain cutoff conditions and other criteria (Rice

et al., 2005), but they all rely on correlation. An inherent problem with correlation

3



4 Chapter 2. Literature Review

studies is that it points to where influence may be, but it does not actually guaran-

tee causation where a correlation is found.

Another commonly used method is to model the problem with Bayesian networks

(Periwal, 2010). These models explain the probability that a node is connected to

others (referred to as the node’s parent) by assigning a statistical distribution to its

probability. In the basic sense, this can only work for acyclic networks, which are

uncommon within biology. Most biological networks are connected in various loops

and other feedback structures (Milo et al., 2002), which create cyclic networks.

This is generally fixed by unfolding a time-series dynamic response of a system

so that each time step represents a unique set of nodes that then connects to the

next step. Each step, therefore, allows for the acyclic nature required by Bayesian

networks.

One of the most influential algorithms currently being used, BANJO, utilizes this

principle and has gained much popularity (Smith et al., 2006). The ability for this

implementation to recover network topologies is less than optimal, but this method

is commonly used due to its easy user interface. Bayesian networks in general re-

quire a lot of data points over time which makes it difficult to work with biochemi-

cal networks since this would quickly become very expensive.

Dynamical models using differential equations have been gaining popularity

over the years, but many different underlying models have been used. There are

two main approaches to this, namely, using nonlinear functions or assuming a lin-

earization around an equilibrium. The nonlinear approaches will generally use Hill

equations, a common set of equations to describe chemical behavior (Quach et al.,

2007). This approach must then fit the parameters with some algorithm. Usually,

this is accomplished with a statistical approach as a heuristic to fit the equations

to the time-series given. This is an issue since multiple network structures can ad-

mit the same dynamic response (Gonçalves et al., 2007). Thus it is not sufficient to
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base a method on this model alone.

The second class of algorithms based on differential equations is composed of

those that exploit the ability of a nonlinear system to be linearized around its equi-

librium points. When this is done, the resulting approximation is valid when the

states of the system remain within a specified distance of this point (a distance that

is somewhat arbitrary and may be different for each system). Dynamical structure

functions employ this fact, as well as VBSSM, another widely used algorithm.

Variational Bayesian state-space model (VBSSM) is a reconstruction method

based on linear differential equations which then use a Bayesian network to ap-

proximate the parameters. Maximum likelihood was first used to parameterize the

model, but this was found to yield excessive false positives (Rangel et al., 2005). A

second approach, based on Bayesian networks, was then used to fit the model to

the data (Beal, 2003). This yielded fewer false positives and works better than the

maximum likelihood approach.

Since a system can be approximated by an infinite number of structures to yield

the same dynamics, DSF approaches the problem not by looking at the progres-

sion through time, but by looking at its actual dynamic response (Gonçalves et al.,

2007). The dynamic response can be modeled in the frequency domain, where the

dynamics for a system has a unique representation. This representation is then fac-

tored in such a way to isolate the dynamic response of the system based on how

each node affects the other. The mathematical foundation for this requires cer-

tain elements to be fixed in order to infer the connective structure. Thus a new

experimental paradigm is imposed. The stipulation is that a perturbation must be

applied that will affect one node before all others. This will then move the nodes’

concentrations slightly away from the equilibrium point in accordance with the dy-

namics of the system. Doing this for each of the nodes will give enough data to

infer the unique topology of the system.



6 Chapter 2. Literature Review

Since many of these algorithms have been established for a while, some compar-

isons have been done. A 2009 study compared all of the aforementioned algorithms

except DSF and found that none of them performed too well (Hache et al., 2009).

Although some of them are frequently used, it is well accepted that the major-

ity of methods fall short of reliably reconstructing the topology of the underlying

network. In 2010 a synthetic yeast strain was developed to in vitro test the ap-

plicability of these algorithms (Cantone et al., 2009). This has been dubbed the

“golden standard” of network reconstruction as it provides a well-defined network

with known topology (Camacho and Collins, 2009).



Chapter 3
Network Reconstruction Algorithms

There are many methods currently available that offer the ability to reconstruct a

network given either time-series or steady-state data. The abundance of algorithms

has arisen due to the difficulty in identifying the governing dynamics of biochemical

systems. These dynamics are much more complex than other systems that have

been successfully modeled, such as electrical circuits. There is no defined notion

of a governing equation, such as can be found in other disciplines. There are many

attempts at mathematical formulization, but no one formulation is decidedly better

than the others. Due to this, different methods to identify network dynamics will

focus on certain models to help design the algorithm.

Formulations of the governing equations have, in recent years, focused on prob-

abilistic and differential equation approaches. With the advent of computers, the

Bayesian methods have become tractable and a feasible option for modelers (Bol-

stad, 2007). This model has been embraced because it can help account for noisy

situations as well as stochastic effects of molecular interactions. Another common

framework is differential equations, with the majority of algorithms focused on fit-

ting parameters to some system of equations. Both of these have shown promise

and are currently used by practicing biologists.

This section will address the methodology behind the algorithms chosen for this

7



8 Chapter 3. Network Reconstruction Algorithms

comparison. The criteria used for inclusion were that they need to be commonly

used, been shown to work reasonably well, and perform adequately with small

datasets. They include Dynamical Bayesian State-Space Models (VBSSM), Bayesi-

an Network Inference with Java Objects (BANJO), and Dynamical Structure Func-

tions (DSF). VBSSM is a combination of differential equations within a Bayesian

framework, BANJO is a pure Bayesian network, and DSF is a control-theoretic ap-

proach to differential equations. The criteria were shown to be satisfied by these

algorithms in Hache et al. (2009).

3.1 BANJO

Bayesian Network Inference with Java Objects (BANJO) is a popular package to

reconstruct networks. This algorithm is used by many researchers from neural net-

works to ecological systems to biochemical systems. It incorporates both the idea

of Bayesian networks and dynamic Bayesian network, the dynamic analog of pure

Bayesian networks, to allow cycles to appear in the resulting network.

A Bayesian network is an acyclic directed graph (DAG) that contains probabilis-

tic information about the state of each node dependent on those that came before

it. This causes the state of a species of interest to be conditionally dependent upon

the nodes that affect it. The nodes in a Bayesian network correspond to a random

variable, which, in the context of network reconstruction, is the state of the species

of interest. Edges are composed of directed arrows, implying a causational pair be-

tween the two. If an arrow extends from node A to node B, then it is said that A is

the parent of B, denoted by π(B) = A. Each node Xi has a conditional probability

distribution that quantifies the effect the set of parent nodes has on it. Combining

these conditions, a Bayesian network can be defined.

Bayesian networks have the unique property of allowing a concise joint distri-
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Figure 3.1: Graphs representing (a) a directed acyclic graph (DAG), (b) a non-
Bayesian network that contains a cycle, and (c) a dynamic DAG that represents the
cyclic graph in (b)

bution over all variables to be defined. Each system of n species is defined with

a random variable Xi expressing the concentration of each of the species xi as a

distribution. The joint probability is the probability that Xi = xi for some concen-

tration xi, expressed as P (x1, . . . , xn). The value of this is expressed by the formula

(3.1.1) P (x1, x2, . . . , xn) =
n∏
i=i

P (xi|π (Xi)),

where π(Xi) is the set of parents of the random variable Xi.

Consider a system composed of four nodes as shown in Figure 3.1(a) as a rep-

resentative of an arbitrary biochemical system. In this system, A is the parent of

both B and C, thus causing B and C to be independent of each other. However,

D is dependent on both B and C. This is an example of a directed acyclic graph

since at no point does a node affect another node that then gets propagated back

to itself. The resulting joint distribution would be:

(3.1.2) P (a, b, c, d) = P (a)P (b|a)P (c|a)P (d|b, c)
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These probabilities can be modeled either discretely or continuously. Although

continuous variables would give a better fit due to the continuous nature of bio-

chemical concentrations, BANJO uses a discretization method to divide the contin-

uous spectrum into a fixed set of intervals. Currently, only five levels of discretiza-

tion are supported (Sladeczek et al., 2006).

These Bayesian networks work well for some applications where there are no

loops, but most biological networks of interest have some sort of feedback which

is prohibited in this model. An alternative formulation is to consider each node at

a specific time point a separate node in the network. This is called a dynamical

Bayesian networks. Unfolding a time-series dataset into a series of networks allow

loops to form, as shown in the examples in Fig. 3.1(c).

The joint distribution, then, must account for all of the states dependent on the

previous time points. Let x be the state vector for all those of interest (in our ex-

ample, it would be x =

[
a b c d

]
) n the number of states (in our case n = 4),

and the number of time points be T . The notation xit implies the ith component of

x at time point t. The joint distribution becomes:

(3.1.3) P (x1, x2, . . . , xn) =
T∏
t=1

n∏
i=1

P (xit|π(xit))

Once these joint distributions are defined (either dynamic or not), BANJO will

attempt to find the topology that yields the best score. This is done by hill climb-

ing or simulated annealing. The hill climbing method attempts to find the best

score by following the gradient as it rises. Simulated annealing, an analogy derived

from metallurgy, is a version of hill climbing that will randomly move in a non-

optimal direction in an attempt to find the global optimum. The random move-

ment is controlled by a parameter defined as the temperature T , that cools at some

rate as time increases. It has been shown that this will converge to the global opti-
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mum, although this is dependent on the rate of cooling, which is difficult to define.

These are similar methods, but the simulated annealing tends to find the global,

rather than a local, optimum better. The network structure that yielded this opti-

mal score is then considered the best estimate.

3.2 Variational Bayesian State-Space Models

Variational Bayesian State-Space Models (VBSSM) incorporate the idea of Bayes-

ian networks, but add dynamics to it by using state-space models. These models

are concise representations of linear dynamical systems. These models incorporate

information about the dynamics of both observed and hidden variables, as well as

inputs and possible noise. It is the simplest of models, but is powerful in its ability

to describe system dynamics.

The algorithm employed by VBSSM views the processes in discrete time. Each

time point can be affected by the dynamics of the system (represented by A), the

inputs ht to the states and ut (with B and D defining which states or outputs re-

ceive the inputs), and noise wt and vt (Rangel et al., 2005).

xt+1 = Axt +Bht + wt(3.2.1)

yt = Cxt +Dut + vt(3.2.2)

It is assumed that the distributions of the random variables are Gaussian, provid-

ing enough knowledge to begin constructing the probability densities. The condi-

tional probabilities of the state and observable outputs are then given by

P (xt+1|xt, ht) ∼ N(Axt +Bht, Q)(3.2.3)

P (yt|xt, ut) ∼ N(Cxt +Dut, R).(3.2.4)
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A joint probability can then be formed by constructing a Bayesian network based

on the dynamics of the state-space model. The joint distribution would give a dis-

tribution that accounts for all of the states, observations, and inputs at all time

points (represented by {xt}, {yt}, {ht}, {ut}, respectively):

P ({xt}, {yt}|{ht}, {ut}) = P (x1)
T−1∏
t=1

P (xt+1|xt, ht)
T∏
t=1

P (yt|xt, ut)(3.2.5)

The correct structure should yield the largest likelihood when applied to this

model. However, the task of finding the optimal solution is difficult and, in most

cases, intractable. A common technique is one called expectation-maximization

(EM). The EM algorithm is a process by which the expected value of the distribu-

tion is calculated, followed by a step where the parameters are maximized. This is

repeated until it converges to an answer. This form of model selection, however,

was shown to infer a high number of false positives (Rangel et al., 2005). A Varia-

tional Bayesian version of the EM algorithm was used instead to address this issue.

Variational Bayesian techniques are used to approximate intractable integrals,

which, in the case of Bayesian methods in general, arise often. A distribution, q(θ)

is defined to be a lower bound for the true distribution with parameter θ which

consists of the unknowns in the system: A,B,C,D and the covariance of the noise

vectors Q and R. An EM algorithm is then applied to maximize the expectation of

q(θ) in order to converge to the most likely parameters for the state space model.

For full treatment of this process, please refer to Beal (2003); Beal et al. (2005);

Rangel et al. (2004, 2005). During this process, the size of A and other variables

are adjusted to account for an arbitrary number of hidden nodes. Since this algo-

rithm attempts to infer all variables in θ, if A is larger than the number of nodes

measured, the extra space contains information about the dynamics of the hidden

states. The Variational Bayesian EM algorithm is applied in successive steps to dif-
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ferent values of hidden states k in order to find which one produces the highest like-

lihood over all tested number of hidden states. It is assumed that the state-space

system is both fully controllable and observable. This ensures that the system can

be identified. These conditions imply that from any starting point x0 the system

can be taken to a state xt with a good choice of noise vectors {wt} as well as given

any output yt the initial state x0 can be determined. Once a set of parameters θ are

found yield the highest likelihood, the structure of the network can be determined

by considering the structure of CB +D.

3.3 Dynamical Structure Functions

Dynamical structure functions are a decomposition of the input-output data into

two matrices: computational structure and control structure. This decomposition is

derived in Gonçalves and Warnick (2008), of which an overview will be given here

in order for the reader to have a basic understanding of how the reconstruction is

possible.

A state-space model will provide information regarding connections between any

given node in a system. However, there is an infinite number of state-space mod-

els that may give the same input-output relationship, even with the same number

of states. More dynamics can be added via the hidden states (unmeasured nodes)

while leaving the input-output relationship the same. Since network reconstruc-

tion utilizes input-output response dynamics to infer connective edges, a unique

state-space representation is impossible to recover. However, all of these state-space

models that yield the same input-output dynamics can be represented by the same

transfer function, a function that relates the input to the output in the frequency

domain, as opposed to the time domain, via the Laplace transformation. Transfer

functions, however, do not yield any information about how a system is connected.



14 Chapter 3. Network Reconstruction Algorithms

State-space 
Model

Dynamical 
Structure 
Functions

Transfer 
Function

Less InformationMore Information

Figure 3.2: Scale showing relative abundance of structural information available to
different mathematical representations

Dynamical structure functions provide an intermediary step in which more infor-

mation about the structure is available than a transfer function, but less than in a

state-space model (see Fig. 3.2). It provides information about the dynamics of a

system, which is contained in both transfer functions and state-space models, and

the structure of observable nodes, which is not available with transfer functions but

is with state-space models. They lack the ability to provide any information regard-

ing hidden nodes, something that state-space models contain. However, knowing

the structure between the hidden nodes is useful enough, which can grow to include

hidden nodes as they become known and more data is obtained.

The dynamical structure can be derived by considering a state-space model given

by Eq. 3.3.1 below.

ẋ = Ax+Bu(3.3.1)

y = Cx(3.3.2)

This is then partitioned into the observed and hidden states without changing

the actual system dynamics:

ẏ
ż

 =

A11 A12

A21 A22


y
z

+

B1

B2

u(3.3.3)
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y =

[
I 0

]y
z

(3.3.4)

where x =

[
y′z′
]′
∈ Rn is the full state vector, y ∈ Rp are the measured states,

and z ∈ Rn−p are the hidden states. The vector u ∈ Rm is the control input as used

earlier. When the Laplace transform is applied to this system, it yields:

(3.3.5)

sY
sZ

 =

A11 A12

A21 A22


Y
Z

+

B1

B2

U
Solving for Z and substituting back into Eq. 3.3.3 yields:

(3.3.6) sY = WY + V U

where W and V are a change of variable, W = A11 + A12(sI − A22)
−1A21 and V =

A12(sI − A22)
−1B2 + B1. If we introduce a variable D = diag(W11,W22, . . . ,Wpp),

then

(sI −D)Y = (W −D)Y + V U(3.3.7)

Y = QY + PU(3.3.8)

where Q = (sI − D)−1(W − D) and P = (sI − D)−1V . It is apparent that Q is a

matrix of transfer functions relating Yi to Yj when i 6= j, as each diagonal entry on

Q is zero. This pair (Q,P ) then describes the dynamical structure function of the

system. The function Q refers to the internal structure of the network and P refers

to the control structure of the network.

Without any prior information, which is being assumed in order to recover a

de novo network, there are some conditions that must hold in order to recover a
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network. The transfer function of the system, given by G, will admit a dynamical

structure pair (Q,P ) such that

(3.3.9) G = (I −Q)−1P

Assuming that m = p, that is the number of measured states is equal to the

number of input states. Assuming this is achieved by having each perturbation

affect a specific measured state (effectively a diagonal P ), the dynamical structure

falls out very nicely as G becomes full rank. Thus, H = G−1 characterizes (Q,P ) as

follows:

(3.3.10) Qij = −Hij

Hii

and Pii = H−1ii

If biological systems had no noise (either inherently or in measurements) and ev-

erything acted in a linear way, then this would suffice to recover any network with

data gathered as specified above. However, this is not the case. Most data will be

noisy and have nonlinear characteristics which will cause a linear representation

of the system above to incorrectly identify the network. But, since the dynamical

structure function is related to the transfer function of the system, the correct sys-

tem can be identified through uncertainty modeling and model selection criteria.

Uncertainty modeling allows for various unmodeled dynamics, such as nonlin-

earities and stochastic effects, to be accounted for, thereby yielding a model that

performs reasonably well. With the dynamical structure functions as currently

explained, the decomposition will yield a fully coupled computational structure,

implying that every state in the system interacts with every other state. This is

generally not the case as species in biological networks tend to interact with only

certain species as defined by their specificity, such as the lock and key model of

enzyme kinetics. To account for this, a distance must be defined as the difference
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between the true measured input-output dynamics given by G and the ones given

by a specified Q̂ ∈ Q where Q is the set of all Boolean structure of Q obtained by

zeroing out various elements in the computational structure. Since a biological sys-

tem is generally loosely connected, it can be assumed that some of the values in Q

are just noise as there really is not a connection between them.

This uncertainty can be modeled in many ways, of which care must be taken to

ensure that the outcome will lead to a convex problem. Convexity is important as

that ensures that there is a single minimum that is also the global minimum. The

choice given in Yuan et al. (2011) is feedback uncertainty. This choice of uncer-

tainty will take the transfer function G and add it to a ∆ that is then recursively

fed back into G. Letting the output of the true system be defined as Ĝ, we can

solve for its transfer function:

z + ∆ z = Gw

(I + ∆) z = Gw

z = (I + ∆)−1Gw

(3.3.11)

Thus the transfer function of the true system from the input u to the output y

is Ĝ = (I + ∆)−1G. Since ∆ represents the possible perturbations (due to noise or

nonlinearities) that are not accounted for in the ideal model ∆, we want to mini-

mize the size of ∆, which is done by minimizing its norm. However, an issue arises

that this will always yield the fully coupled network. Thus, the number of connec-

tions is penalized if too high. This is done with Aikaike’s Information Criterion

which puts a weight on the number of connections; therefore, as the number of con-

nections increase, the score increases also. In this way, a structure representing the

most likely network topology is achieved in Q̂.
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Chapter 4
Network Models

This chapter presents an overview of the different methods used to perform the

comparisons. First, the in silico synthetic models will be described, followed by a

description of the mathematical model of the IRMA network.

4.1 Synthetic Networks

An in silico model of a network allows for a comparison to be made under con-

trolled conditions. A downside to this, of course, is that no model is perfect, espe-

cially of biological systems. There are some basic formulas that are used to model

biological processes, but these do not come close to an exact representation of the

natural process, unlike the laws of physics or thermodynamics; they are more a

guideline to the modeling process. Biological systems can interact in many ways

with many different governing equations.

Although natural systems are inherently nonlinear, linear systems can be used

to model them. Linear models are the simplest and most easily defined class of

models. It can be argued that if a linear network cannot be recovered from an algo-

rithm, then there is little chance that it will be recovered when applied to nonlinear

data. The linearization can be done around the equilibria of the system assuming

19
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that they are stable. Much insight can be gained through this approximation, as

there are many tools available for the analysis of linear systems compared to the

relatively few for nonlinear systems. With this in mind, simulations were conducted

based on simple linear models. These simulations were constructed by applying a

step input to each of the measured nodes in order to cause a perturbation that will

change to which states the system equilibriates. Based on the current criteria for

successful reconstruction with dynamical structure functions, these were limited to

systems that would converge to a non-zero, stable equilibrium.

Thus, assuming a state-space representation as in Eq. 3.3.1, two requirements

must be satifisfied for a system to be used in this simulation study. The first one

is that A must be Hurwitz and the second is that CA−1B 6= 0. The first criterion

refers to the stability of the matrix. If a matrix is Hurwitz, all of the eigenvalues

are strictly negative implying stability in the solution of the state-space model. The

second one ensures a non-zero equilibrium.

These conditions are derived by solving the state-space model with a step input

(i.e., u(t) is the Heaviside function). The first step is to take the Laplace transfor-

mation of the state-space to solve for x, with the Laplacian variable s:

ẋ(t) = Ax(t) +Bu(t)(4.1.1)

sX(s)− x0 = AX(s) +BU(s)(4.1.2)

(sI − A)X(s) = x0 +BU(s)(4.1.3)

X(s) = (sI − A)−1x0 + (sI − A)−1BU(s)(4.1.4)

x(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(t)dτ(4.1.5)

Inserting this into the state-space equation and remembering that the Heaviside

function is defined as zero when t ≤ 0 and one otherwise we get the solution at any
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time t:

y(t) = CeAtx0 +

∫ t

0

CeA(t−τ)Bu(t)dτ(4.1.6)

= CeAtx0 + CA−1eAtB − CA−1B(4.1.7)

To find what the steady state values of the system will be after the transient

parts have vanished, we take the limit of y(t) → ∞ which leaves us with −CA−1B.

Since this cannot be zero, we have condition (2). The limit can only be taken if A

is Hurwitz, otherwise the matrix exponential will approach infinity and the system

will have no steady state, giving us condition (1).

As discussed previously, simulating allows the capabilities of an algorithm to be

assessed. The focus of this study is to investigate the effect hidden states have on

reconstruction. This is a common phenomenon encountered in biology, since often

only a few of a species in a network are known, and only a fraction of those can

be measured. The amount of hidden states of the original system may decrease as

more nodes are learned.

Hidden nodes represent the nodes that are unknown or simply not measured

within a system. In the Dynamical Structure Function model, this is expressed in

the vector z, while in Variational Bayesian it is within the size given to k. Since

hidden nodes in a given system are arbitrary and could be few to many within a

system of interest, it is important that methods that claim to reconstruct network

topology have ways to account for this.

In order for the simulation to represent a realistic system, artificial noise was

generated and added to the signals from a Gaussian distribution. The results of

simulating a system yielded a response with a pure signal. Noise was added to the

signals to ensure a signal to noise ratio of around 120 dB. This is what previous

experiments had shown would generally be good for reconstruction. Signal to noise
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ratio is a standard measurement in signal processing that gives the ratio of the

power of the signal to the noise in the signal. This was calculated with the follow-

ing equation,

(4.1.8) SNR = 20 log

(
1

ij

∑
i,j

d2ij
n2
ij

)
,

where d ∈ D is the data, or measured signal, and n ∈ N is the noisy signal. Both D

and N are of dimension i× j.

4.2 IRMA Network

The IRMA network is a synthetic network described by Cantone et al. (2009). This

network was developed in order to provide a golden standard in the testing of net-

work reconstruction methods. A dilemma arises when an algorithm is developed in

that there needs to be an objective standard to which it can be compared to other

methods. By creating this network, a standard now exists that can show how well

an algorithm works.

The network was synthetically inserted into a strain of yeast Saccaromyces cere-

visiae with known topology and dynamics. The network is designed as a transcrip-

tional network of five genes. Each gene is transcribed and translated into a protein

that in turn activates or inhibits the transcription of the next gene. In Fig. 4.1

the interactions between both mRNA and proteins are shown. In order to perturb

nodes in the system, a set of plasmids containing a promoter and the gene of in-

terest were created. The promoter is spliced into a plasmid (small circular strand

of DNA) such that by adding a specific chemical, the gene is turned on at a semi-

regular rate. This effectively allows a step input to be applied to the system to a

specific node.

The IRMA network has a full mathematical formulation that can be examined
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Promoter Inhibitor

GAL4

GAL80

SWI5 ASH1

ASH1

(a)

Promoter Inhibitor

GAL4

GAL80

SWI5 ASH1

ASH1

(b)

Figure 4.1: The true structure of the IRMA network for (a) mRNA and (b) proteins

to understand its dynamics (Marucci et al., 2010). The original system of equations

contains all of the mRNA and protein species and the relationships among them.

When the original experiments were run by Cantone et al., the focus was on the

transcriptional network, so all of the protein species were considered hidden states.

A time delay was applied, since the SWI5 is delayed by about 100 s. They showed

that the simulations of this system align very well with experimental results.

The model accounts for two different growth conditions that can affect the dy-

namics of the system. The rate of transcription changes depending on if it is grown

on glucose or galactose, two forms of sugar. This is accomplished in the model

by adjusting various parameters. Since this affects the dynamics of the system, it

is hoped that an algorithm can recover the same structure independent of which

growth medium was used.

For the purposes of the simulation study, as a preliminary step, a simulation was

performed on the mathematical representation. This was accomplished with the

dde35 command to solve the delay differential equation. Parameters were assigned

based on those found in Cantone et al. (2009). A step input was applied to simu-

late the same effect that the plasmid has in the biological system.
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Chapter 5
Results

The results will be presented in two sections, with the first exploring the results of

the synthetic networks followed by the results of the simulation of a real network.

Any algorithm that reconstructs network topology needs to identify both connec-

tions that exist and the lack of connections between specific nodes. The analysis for

the reconstruction, therefore, uses both sensitivity and specificity to identify how

well an algorithm works.

Specificity is the ability to accurately discern where the absence of a reaction

is, while sensitivity is the ability to detect the incidence of a reaction occurring

between two species. If the number of true positives is TP , false positives is FP ,

true negatives TN , and false negatives FN , then these are defined as:

Specificity =
TN

TN + FP
(5.0.1)

Sensitivity =
TP

TP + FN
(5.0.2)

These give insight into the efficacy of the algorithm but not a comparative tool

to compare how well one performs against another. A single metric is needed to

accurately compare algorithms. A common tool for this is the F-Measure which is

a generalization of the harmonic mean of a dataset (van Rijsbergen, 1979). The F-
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Measure (Eq. 5.0.5 is defined in terms of precision (Eq. 5.0.3) and recall (Eq. 5.0.4).

P =
TP

TP + FP
(5.0.3)

R =
TP

TP + FN
(5.0.4)

F =
2PR

P +R
(5.0.5)

5.1 Synthetic Networks

The synthetic networks were created and simulated to a nonzero steady-state. Sys-

tems of four observed nodes were used, with anywhere from no hidden states to

three. Artificial noise was added to simulate data more likely to represent biologi-

cal processes. These statistics are represented graphically in Fig. 5.1 and in tabular

form in Table 5.1.

The analysis for each of the networks were accomplished with a t-test performed

via Matlab’s Statistics Toolbox. This test was performed with α = 0.05 so any

p value greater than 0.05 would be statistically similar. The comparison was per-

formed for DFS to BANJO and DFS to VBSSM on the sensitivity, specificity, and

F Measure metrics.

The sensitivity of VBSSM was statistically the same as DSF when k = {1, 2, 3}.
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Figure 5.1: The recovery statistics for a random sample of synthetic networks with
four observed states and varying number of hidden states k
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Table 5.1: The scores and p-values for each of the experiments

k=0 k=1 k=2 k=3
Score p µ p Score p Score p

BANJO
Sensitivity 0.313 0.000 0.225 0.000 0.222 0.000 0.251 0.000
Specificity 0.764 0.642 0.754 0.693 0.646 0.758 0.887 0.823
F-Measure 0.417 0.000 0.336 0.000 0.342 0.000 0.393 0.000

VBSSM
Sensitivity 0.896 0.035 0.775 0.390 0.647 0.391 0.788 0.079
Specificity 0.182 0.001 0.050 0.021 0.146 0.008 0.358 0.000
F-Measure 0.673 0.005 0.674 0.000 0.682 0.035 0.810 0.843

DSF
Sensitivity 0.750 0.825 0.721 0.705
Specificity 0.833 0.667 0.708 0.868
F-Measure 0.811 0.857 0.824 0.817

When k = 0, VBSSM performed statistically better than DSF with a p = 0.035,

while when k = 1 and k = 2 there was no apparent difference between the scores.

When k = 3, VBSSM again performed better than DSF, but was not statistically

better with p = 0.079. BANJO, for all levels of k, had p values in the range of

1e− 10; so low that there is no statistical relationship between them.

The specificity was statistically similar between DSF and BANJO with a p value

averaging 0.743±0.079. In this case, though, DSF and VBSSM differed greatly with

DSF having a higher score by an average 0.510 units. The p value associated with

DSF and VBSSM ranged between 0.000 and 0.021.

The F-Measure yielded results that merge the sensitivity and specificity results.

BANJO was always significantly worse than DSF, with p values extremely low;

three significant digits show 0.000. VBSSM, however, had low p values for when
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Figure 5.2: The recovery statistics for a simulation of the IRMA network
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k = 0 and k = 1 (0.005 and 0.000 respectively). With two hidden states (k = 2) p

rose to 0.035 and at k = 3, DSF and VBSSM performed statistically similarly with

p = 0.843.

5.2 IRMA Network

The reconstruction of the IRMA network from simulated data is shown in Fig. 5.2

and Table 5.2. Since there was only one dataset for this network, there was no vari-

ation and thus no p value could be computed. Comparison will be made based on

the difference between the scores for each of the algorithms.

Sensitivity analysis showed that DSF performed better than both VBSSM and

BANJO. DSF recovered six times the edges of BANJO on both simulated growth

mediums, while it recovered three times the edges than VBSSM on glucose and two

times the edges on galactose.

The specificity showed that BANJO, which correctly identified every non-con-

nection, performed better in this category than both DSF and VBSSM. DSF found

about 2
3

of the non-connections, while VBSSM identified a little less than half of

the absent connections.

The F-Measure of the resulting data shows that DSF performed better than ei-

Glucose Galactose

BANJO
Sensitivity 0.125 0.125
Specificity 1.000 1.000
F Measure 0.222 0.222

VBSSM
Sensitivity 0.250 0.375
Specificity 0.412 0.529
F Measure 0.200 0.316

DSF
Sensitivity 0.750 0.750
Specificity 0.667 0.667
F Measure 0.667 0.667

Table 5.2: The reconstruction statistics for IRMA pathway
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ther BANJO or VBSSM. DSF performed three times better than VBSSM on the

glucose and two times better on the galactose. The results for BANJO were the

same for both simulated mediums, with DSF performing three times better.
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Chapter 6
Conclusion

6.1 Discussion

The results indicate that there is a strong reason to consider DSF superior to

BANJO and VBSSM when trying to reconstruct network topology. However, it

is apparent that sometimes the sensitivity or specificity of one of the other algo-

rithms is better than DSF. Since one is not an indicator of high success on its own,

this helps support the need to use DSF.

Although generally the ability to discern both the presence as well as the absence

of a connection is vitally important to correct network inference, the importance of

this may be decreased under some circumstances. If the only information needed

is whether or not two species are directly or indirectly connected, then a sensitive

method is needed. On the other hand, if the question pertains to whether or not

two species are disconnected, then it should be fairly specific. However, if a de novo

reconstruction is needed, both specificity and sensitivity should be high. In this

case, we want as clear a picture as possible, requiring both a low false-positive rate

(specificity) as well as low false-negative rate (sensitivity).

It was shown that the specificity of VBSSM is much worse than the other two

methods. This might be explained by the fact that the framework upon which
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VBSSM is built tended to overestimate the number of connections (Beal et al.,

2005). The first method to select network topology, as discussed in Chapter 3.2,

was to use a maximum likelihood expectation-maximization approach. A Bayesian

approach was used in order to limit the number of false positives in the inference.

However, this result indicates that even the Bayesian approach will yield too many

false positives to be very useful. The sensitivity of VBSSM, however, is roughly the

same, if not better, than DSF. This is a strong point in favor of VBSSM, especially

if the only thing of interest is whether or not two nodes are connected.

BANJO had similar specificity when compared to DSF. Since the difference was

not enough to be statistically different, the resulting inference is similar to DSF

when it comes to the number of non-connective edges. A reason that BANJO may

have a high specificity is because it tends to only output a few edges. Due to this,

it will not incorrectly identify too many edges, which keeps the list of true non-

connected species more accurate. This presents a problem when trying to infer the

topological structure of an uncertain network.

Overall, the F-Measure can be used to rank the algorithms. In this category,

DSF is better than both VBSSM and BANJO, except when there are three hid-

den states. At this point Variational Bayesian performs similar to DSF. This is

an interesting anomaly, especially when the F-Measure score of VBSSM is viewed

in progression, as it rises as the number of hidden states increase and approaches

the score of DSF. This is interesting, and may lie in the fact that both these al-

gorithms have models based upon state-space models. These models account for

hidden nodes in the system that affect those that are observed in some unknown

way. By taking this into account, they are better equipped to handle high numbers

of hidden states.
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6.2 Conclusion

The aim of this thesis has been to provide a comparison of Dynamical Structure

Functions (DSF) against two popular network reconstruction algorithms. These al-

gorithms, Variational Bayesian State-Space Model (VBSSM) and Bayesian Network

Inference with Java Objects (BANJO), have established theoretical bases and have

been used in similar fields of application with success. It would thus be useful to

have a comparison of a new algorithm against ones currently in use.

In conclusion, the results have shown that for de novo reconstruction, Dynamical

Structure Functions outperform the other two methods of interest. Although each

of the methods tested has its own strong points, generally both specificity and sen-

sitivity are required for reconstruction of any network of interest. Until now, a low

threshold of ability has been the norm, with an acceptance of poor performing algo-

rithms. Dynamical Structure Functions exceeds this threshold and performs better

than the other algorithms in the study and should be used when experiments allow

it to perform the reconstruction of a network.
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