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Abstract— Networks of controlled dynamical systems exhibit
a variety of interconnection patterns that could be interpreted
as the structure of the system. One such interpretation of system
structure is a system’s signal structure, characterized as the
open-loop causal dependencies among manifest variables and
represented by its dynamical structure function. Although this
notion of structure is among the weakest available, previous
work has shown that if no a priori structural information is
known about the system, not even the Boolean structure of
the dynamical structure function is identifiable. Consequently,
one method previously suggested for obtaining the necessary
a priori structural information is to leverage knowledge about
target specificity of the controlled inputs. This work extends
these results to demonstrate precisely the a priori structural
information that is both necessary and sufficient to recon-
struct the network from input-output data. This extension is
important because it significantly broadens the applicability
of the identifiability conditions, enabling the design of network
reconstruction experiments that were previously impossible due
to practical constraints on the types of actuation mechanisms
available to the engineer or scientist. The work is motivated
by the proteomics problem of reconstructing the Per-Arnt-Sim
Kinase pathway used in the metabolism of sugars.

I. INTRODUCTION: NETWORK RECONSTRUCTION

Two fundamental properties characterizing networks of
controlled dynamical systems include their overall, dynamic
behavior and their network structure. Since interconnections
of systems are themselves systems, standard mathematical
representations of systems can be used to describe networks
of controlled dynamical systems. Nevertheless, while differ-
ent representations may describe the same overall dynamic
behavior of the network, they can convey very different
information about the network’s underlying structure.

Consider, for example, an nth order, causal linear time-
invariant system with m inputs and p outputs. This system
may be described both by a p × m transfer function (TF)
matrix G(s) and a state space realization characterized by the
matrices (A,B,C,D). If G(s) = C(sI −A)−1B +D, then
both of these representations describe the overall dynamic
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behavior of the system. Nevertheless, these representations
carry very different information about the system’s internal
network structure.

In particular, the sparsity pattern of G reveals closed-loop
dependencies of the outputs on inputs. Thus, for example, if
G were diagonal, then any dependencies that output i may
have on any other input, other than input i, must be exactly
cancelled internally within the system. This sparsity structure
of the TF is the weakest notion of system structure that we
typically consider.

On the other hand, the state space realization describes
detailed information about the dependencies among inputs,
state variables, and outputs. This offers a much stronger
understanding of system structure; it conveys everything
revealed by the sparsity structure of the TF and much more
about system structure. For example, knowing the state real-
ization can determine whether a system with a diagonal TF
G is truly decoupled, or whether off-diagonal dependencies
between inputs and outputs are externally hidden by exact
cancellations within the system.

Because different representations of the same system de-
scribe different amounts of structural information, they need
different experimental conditions to be correctly identified.
For example, a rich theory of system identification has
detailed sufficiency of excitation and sample complexity re-
quirements necessary to determine a system’s TF from input-
output data [10]. Discovering richer structural information
than the sparsity structure of the TF, however, demands
additional a priori knowledge about the system. For example,
if one not only met the requirements to identify a system’s
TF from input-output data, but also knew that the measured
outputs were, in fact, the system’s state variables, then
the state space representation of the system could also be
identified.

For many applications, the experimental burden necessary
to identify a network’s state space realization is prohibitive,
while the burden necessary to identify the associated TF
may be reasonable. In these situations, and when additional
structural information about the system is desired, another
representation of the system may be employed that describes
more structural information than the TF yet less than the state
space realization (and thus incurring less of an experimental
burden). The dynamical structure function (DSF) of a linear
time-invariant system is just such a partial-structure repre-
sentation.

This paper describes the experimental burden necessary
and sufficient to identify a system’s DSF. This burden is
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characterized in terms of parts of the DSF that must be
known a priori so that knowledge of the TF, identified from
input-output data, would then uniquely specify the remaining
parts of the DSF. Previous work has shown that if only
the input-output data necessary to identify the system’s TF
are known a priori, then not even the Boolean structure,
which denotes the presence of a causal relationships without
its effects, of the DSF can be reconstructed. On the other
hand, if one additionally knows that each input, ui, exhibits
target specificity, in that it only affects outputs yj through
its associated output, yi, then the DSF can be uniquely
reconstructed from sufficiently informative input-output data
or knowledge of the system’s TF [2].

In this paper we show that, while target specificity is a
sufficient condition for reconstruction of the DSF, it is not
necessary. By providing a complete set of necessary and
sufficient conditions for reconstruction of a system’s DSF,
we significantly broaden the applicability of the associated
reconstruction results [1], [9], [11], [3] . The next section
details mathematical preliminaries concerning DSF as a
partial-structure representation of a system. The main result
then follows, with necessary and sufficient identifiability
conditions for reconstructing a system’s DSF. The last section
motivates the utility of these new results with a network
reconstruction problem from proteomics where target speci-
ficity can not be guaranteed. Conclusions follow.

II. DYNAMICAL STRUCTURE FUNCTIONS

This section gives an overview of the derivation of DSF
as discussed in [2]. To see how the DSF is derived, consider
the system given by:

[
ẏ
ẋ

]
=

[
A11 A12

A21 A22

] [
y
x

]
+

[
B1

B2

]
u

y =
[
I 0

] [ y
x

]
.

(1)

Note that C =
[
I 0

]
allows the variables to be separated

into the measured states, y, and the unmeasured states, x.
Equation (1) describes the state space realization of the

system, which contains information about the dependency
among input, state, and output variables and defines both
the structure and dynamics of the entire network.

The next step in the derivation of the DSF is to take
Laplace Transforms of the signals in (1). Assuming zero
initial conditions we get:

[
sY
sX

]
=

[
A11 A12

A21 A22

] [
Y
X

]
+

[
B1

B2

]
U (2)

Solving for X , gives:

X = (sI −A22)
−1

A21Y + (sI −A22)
−1

B2U

Substituting into the first equation of (2) then yields

sY = WY + V U

where W = A11 + A12 (sI −A22)
−1

A21 and V =
A12 (sI −A22)

−1
B2 + B1. Let D be a matrix with the

diagonal term of W , i.e. D = diag(W11,W22, ...,Wpp).
Then,

(sI −D)Y = (W −D)Y + V U

Note that sI − D is always invertible since D is always
proper. We then have:

Y = QY + PU (3)

where

Q = (sI −D)
−1

(W −D) (4)

and
P = (sI −D)

−1
V (5)

Note that since W − D is a hollow matrix (a matrix with
zeros along the diagonal), then Q is also a hollow matrix.

The matrix Q is a matrix of strictly proper TF from Yi

to Yj , i 6= j relating each measured signal to all other
measured signals. Likewise, P is a matrix of strictly proper
TF from each input to each output without depending on any
additional measured state Yi.

Definition 1: Given the system (1), we define the dynam-
ical structure function of the system to be (Q,P ), where
Q and P are the internal structure and control structure,
respectively, and are given as in (4) and (5).

A. Meaning of the Dynamical Structure Function

The DSF describes the network structure of the system
(1) in the sense that the matrix Q can be interpreted as
the weighted adjacency matrix of a directed graph, an
example of which is shown in Figure 1, indicating the
causal relationships between measured states. Also, P is the
weighted adjacency matrix of a directed graph indicating the
causal relationships between inputs and measured states. The
weights on the edges of this graph are TFs between relevant
variables. This graphical representation of the system is
referred to as the signal structure of the system.

Note that the TF matrix of the graph in Figure 1 would
be full because every input affects each output, whether it
be directly or indirectly. This can be readily seen from the
figure since there is a path from each input , ui, to every
measured output of the system, yj .

The DSF, on the other hand, contains more information
about the structure of the system than the TF. It describes the
original TF as an interconnection of systems characterized
by the elements of Q and P . In this sense, we describe
the DSF as the open-loop causal dependencies among the
manifest variables, distinguishing it from the closed loop
dependencies characterized by the TF.

This notion of the DSF as characterizing open loop causal
dependencies among manifest variables is further described
by the following theorem:

Theorem 1: Let (A,B) be the matrices from the state-
space representation of an LTI system, and (Q,P ) its dy-
namical structure function.
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Fig. 1. Signal Structure representation of a system with three inputs
and three outputs. Note that the transfer function for this system is fully
connected, while the dynamical structure function, and its associated signal
structure, exhibits a particular ring structure.

1) If Qij is nonzero, then either Aij is nonzero
or there exists a sequence k1, k2, ... of indices
corresponding to hidden states such that
A(i, k1), A(k1, k2), ..., A(km−1, km), A(km, j) are
nonzero

2) If Pij is nonzero, then either Bij is nonzero
or there exists a sequence k1, k2, ... of indices
corresponding to hidden states such that
A(i, k1), A(k1, k2), ..., A(km−1, km), A(km, j) and
B(km, j) are nonzero

Proof: We proceed with a proof by contradic-
tion. Assume that Qij is nonzero, but that Aij is
zero and there does not exist a sequence k1, k2, ...
of indices corresponding to hidden states such that
A(i, k1), A(k1, k2), ..., A(km−1, km), A(km, j) are nonzero.
Then, we see that:

Wij = Aij + (A12 (sI −A22)
−1

A21)ij = 0

From the definition of Q in (4), we note that the off-
diagonal values of Q are nonzero (zero) when the off-
diagonal values of W are nonzero (zero). Thus,

Wij = 0 =⇒ Qij = 0

which gives us a contradiction. The proof for part (b) is
similar.

Note that there are subtle differences between a system’s
DSF and its subsystem interconnection structure. In partic-
ular, while the DSF does, in fact, describe a system as an
interconnection of systems, as described by the Q and P
matrices, these systems are not necessarily subsystems of
the original system. In particular, describing a system an
an interconnection of subsystems requires one to partition
the states of the system into distinct parts, where each part
of the state vector corresponds to the state of an associated
subsystem. The DSF, on the other hand, does not demand the
existence of such a partition when describing the open-loop
causal dependencies among manifest variables [10].

B. Relationship of the Dynamical Structure Function to a
System’s Transfer Function

Given any system (1), its DSF, like its TF, is uniquely
specified. However, although the system’s TF contains the
dynamics of the system, it yields no information about the
structure of the network. The direct relationship between a
system’s DSF and its TF can be defined as:

Lemma 1: [2] The transfer function, G, of the system (1),
is related to its dynamical structure, (Q,P ), by

G = (I −Q)−1P (6)

This follows from (3) and Y = GU .

C. Signal Structure Reconstruction

Network reconstruction considers the problem of finding
the DSF of a given system, which is consistent with its TF.
This makes it similar to the realization problem, which is
concerned with finding the state-space description that is
consistent with a system’s TF, shown in Figure 2.

Data     Models 
Reconstruction Realization 

Identification 

Transfer 
Function 

Dynamical 
Structure Function 

State 
Realization 

Structural 
Informativity 

G (Q,P) (A,B,C,D) 

Fig. 2. Different types of models of the same system describe different
amounts of structural information. The reconstruction problem, like the
realization problem, requires additional information about the system above
and beyond the input-output data necessary to identify the transfer function.

Like realization, the problem of reconstruction is ill-
posed, however, since there are many different DSFs that
are consistent with a given TF. The next lemma makes this
idea precise:

Lemma 2: [3] Given a transfer function G, the set SG of
all dynamical structure functions consistent with G can be
parameterized by a p× p internal structure function, Q̃, and
is given by

SG =

{
(Q,P ) :

[
Q′

P ′

]
=

[
0
G′

]
+

[
I

−G′

]
Q̃′, Q̃ ∈ Q

}
,

(7)
where Q is the set of internal structure functions, and where
A′ is the conjugate transpose of a matrix A. Moreover, the
set SG has p2 − p degrees of freedom.

Thus, the reconstruction problem can be characterized as
in [3] with the following theorem:

Theorem 2: Given any p × m transfer function G, with
p > 1 and no other information about the system, dynamical
and boolean reconstruction is not possible. Moreover, for any
internal structure Q, there is a dynamical structure function
(Q,P ) that is consistent with G.

However, since the DSF (Q,P ) is a partial structure
representation of the network, less information is needed for
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the DSF to be reconstructed than for the entire state space
to be realized. The following corollary from previous work
indicates what partial-structure information, which refers to
a priori knowledge of some of the elements of Q or P , is
sufficient for dynamical structure reconstruction.

Corollary 1: [3] If m = p, G is full rank, and there
is no information about the internal structure, Q, then the
dynamical structure can be reconstructed if each input con-
trols a measured state independently, that is, without loss of
generality, the inputs can be indexed such that P is diagonal.

This section served to describe the reconstruction method-
ology from [2] and the basic requirements for reconstruction
of the DSF of a system such as (1). Equipped with this
description, we are now prepared to extend the details
discussed in this section in order to allow for systems whose
measured states cannot be independently controlled. These
systems have a P matrix that is not diagonal, hence previous
methods have to be extended to accommodate them.

III. MAIN RESULT

Identifiability conditions fundamentally concern the defi-
nition of a map from model parameters to data and ensuring
that it is injective. In this way, a particular set of parameters is
uniquely specified by the data, identifying the correct model
from the set of models under consideration.

Identifying a system’s DSF from data involves the standard
issues related to identifying a TF from data (sufficiency of
excitation, etc.), along with additional issues related to the
fact that many DSF generate the same TF (consider Lemma
2). In the sequel we will ignore the standard issues and
focus on the additional identifiability issues unique to DSF.
Consequently we will assume that the system’s TF has been
successfully identified from data and focus on necessary
and sufficient conditions for then recovering the DSF. To
accomplish this, we will construct the map from the elements
of the DSF to the associated TF and establish conditions
ensuring this map is injective.

To facilitate the discussion, we introduce the following
notation. Let A ∈ Cn×m and B ∈ Ck×l. Then:
• blckdiag(A,B) is the block diagonal matrix given by[

A 0
0 B

]
,

• ai is the ith column of matrix A,
• A−i is the matrix A without it’s ith column,
• aij is the (i, j)th entry of matrix A,
• A′ is the conjugate transpose of matrix A,
• R(A) is the range of A,
• −→a is the vector stack of the columns of A, given by

a1
a2
...

am


• and ←−a is the vector stack of the columns of A′.

The construction of a map from elements of the DSF to
the associated TF begins by rearranging the relationship from
Lemma 1 in Equation (6) to yield:[

I G′
] [ P ′

Q′

]
= G′ (8)

Noting that

AX = B ⇐⇒ blckdiag(A, ...,A)~x = ~b

and defining X =
[
P ′ Q′

]
then allows us to rewrite

Equation (8) as[
I blckdiag(G′, ..., G′)

]←−x =←−g . (9)

Further noting that since the diagonal elements of Q are
identically zero and the dimensions of P , Q, and G are p×m,
p× p, and p×m respectively, then exactly p elements of ←−x
are always zero. Abusing notation, we can then redefine ←−x
to remove these zero elements, reducing Equation (9) to the
following:[

I blckdiag(G′−1, G
′
−2, ..., G

′
−p)

]←−x =←−g . (10)

Equation (10) reveals the mapping from elements of the
DSF, contained in←−x , to its associated TF, represented by←−g .
The mapping is clearly a linear transformation represented by
the matrix operator

[
I blckdiag(G′−1, G

′
−2, ..., G

′
−p)

]
.

This matrix has dimensions (pm) × (pm + p2 − p), and
thus the transformation is certainly not injective. This is why
not even the Boolean structure of a system’s DSF can be
identified – even from perfect information about the system’s
TF – without additional a priori structural information.

Identifiability conditions will thus be established by deter-
mining which elements of←−x must be known a priori in order
to reduce the corresponding transformation to an injective
map. To accomplish this, consider the (pm + p2 − p) × k
transformation T such that

←−x = Tz (11)

where z is an arbitrary vector of size k. The following lemma
describes technical conditions on T establishing necessary
and sufficient identifiability conditions for DSF reconstruc-
tion.

Lemma 3: Let
M = LT, (12)

where L =
[
I blckdiag(G′−1, G

′
−2, ..., G

′
−p)

]
and T is

a (pm + p2 − p) × k matrix operator as in Equation (11).
Then M is injective if and only if

1) k ≤ pm, and
2) rank(T ) = k (i.e. T is injective).

Proof: Since
[
I blckdiag(G′−1, G

′
−2, ..., G

′
−p)

]
has

rank pm, rank(M) = min(pm, rank(T )). If rank(T ) >
pm, implying k > pm, then M is clearly not injective. If
rank(T ) ≤ pm, then rank(M) = rank(T ) and M will be
injective if and only if k = rank(T ).

Theorem 3: (Identifiability Conditions) Given a system
characterized by the transfer function G, its DSF (Q,P ) can
be identified if and only if
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1) M , defined as in Equation (12), is injective, and
2) ←−g ∈ R(M).

Proof: The proof follows immediately from the ob-
servation that M is the mapping from unidentified model
parameters to the system TF. Under these conditions one
can clearly solve for z given G and then construct the
DSF from ←−x , where ←−x = Tz, and T is precisely the a
priori system information that is necessary and sufficient for
reconstruction.

We will now illustrate this reconstruction result on some
simple examples.

Example 1: Consider a system with square TF given by

G =


G11 G12 ... G1p

G21 G22 G2p

...
. . .

...
Gp1 Gp2 ... Gpp

 .

Previous work has shown that if G is full rank and it is
known, a priori, that the control structure P is diagonal that
reconstruction is possible [2]. Here we validate that claim by
demonstrating that the associated T matrix becomes:

P11

P12

...
P21

P22

...
Ppp

Q12

...
Qp(p− 1)



=



1 0 ... 0 0
0 0 ... 0 0
...

...
. . .

...
0 0 ... 0 0
0 1 ... 0 0
...

. . . . . .
...

0 ... 1 ... 0
0 ... 0 1 0
...

. . .
...

. . .
...

0 ... 0 0 1





P11

P22

...
Ppp

Q12

...
Qp(p−1)



yielding the operator M = LT as:

M =

 e1 0 0 G′−1 ... 0

0
. . . 0 0

. . . 0
0 ... ep 0 ... G′−p


where ei is a zero vector with 1 in the ith position. Note
that M is a square matrix with dimensions p2 × p2 and
will be invertible provided G is full rank, thus enabling
reconstruction.

Example 2: Given the following TF of a system:

G =

[
s+2

s2+3s+1 − s2+3s+3
(s+2)(s2+3s+1)

s+2
(s+1)(s2+3s+1)

s2+s−1
(s+1)(s2+3s+1)

]
We attempt to find the DSF (Q,P ) of the system:

Q =

[
0 Q12

Q21 0

]
and P =

[
P11 P12

P21 P22

]
yielding the vector of unknowns ~x =[
P11 P12 P21 P22 Q12 Q21

]′
. This gives us

the system of equations of the form L~x = ~b:


1 0 0 0 s+2

(s+1)(s2+3s+1) 0

0 1 0 0 s2+s−1
(s+1)(s2+3s+1) 0

0 0 1 0 0 s+2
s2+3s+1

0 0 0 1 0 − s2+3s+3
(s+2)(s2+3s+1)



P11

P12

P21

P22

Q12

Q21

 =


s+2

s2+3s+1

− s2+3s+3
(s+2)(s2+3s+1)

s+2
(s+1)(s2+3s+1)

s2+s−1
(s+1)(s2+3s+1)


Without additional information a priori structural informa-
tion, we can not reconstruct. Suppose, however, that we know
a priori that P takes the form:

P =

[
P11 −P11

0 P22

]
Note that this non-diagonal P fails to meet the previous
conditions for reconstruction [2], [1]. Nevetheless, the vector
of unknowns ~x can then be decomposed into the form T~z
as follows:

T =


1 0 0 0
−1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and ~z =
[
P11 P22 Q12 Q21

]′

Replacing ~x with T~z above yields the system of equations
of the form M~z = ~b, where M = LT :

1 0 s+2
(s+1)(s2+3s+1) 0

−1 0 s2+s−1
(s+1)(s2+3s+1) 0

0 0 0 s+2
s2+3s+1

0 1 0 − s2+3s+3
(s+2)(s2+3s+1)



P11

P22

Q12

Q21



=


s+2

s2+3s+1

− s2+3s+3
(s+2)(s2+3s+1)

s+2
(s+1)(s2+3s+1)

s2+s−1
(s+1)(s2+3s+1)


In this case M is full rank, from theorem 3 we know that
the system is reconstructible. By solving for ~x = (M)−1~b
we get the DSF to be:

Q =

[
0 1

s+2
1

s+1 0

]
and P =

[ 1
s+1 − 1

s+1

0 1
s+2

]
IV. MOTIVATING EXAMPLE: THE PAS KINASE PATHWAY

An example of such a network is the Per-Arnt-Sim
(PAS) Kinase pathway. Human mutations in the PAS Kinase
pathway have recently been linked to the early develop-
ment of type 2 diabetes [7]. The PAS Kinase pathway
is composed of proteins that interact in specific ways to
direct the metabolism of sugars in eukaryotic cells. Each
of these proteins have both an activated and a deactivated
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form that serves a distinct function within the network. The
identification of network structure in this system is an ideal
application of signal structure theory.

Several PAS Kinase networks have been proposed such as
in [5], so analysis of such a pathway with the DSF method
would help to indicate flaws or validate proposed biological
pathways. Yeast serves as a model biological organism for
understanding the basic processes of life due to the ease of
study and the conservation of many pathways. In fact, the
best characterized PAS Kinase pathway, the Ugp1 pathway,
was first identified in yeast [6].

One of the proposed networks for the PAS Kinase Ugp1
pathway is indicated in Fig. 3. In this pathway there are
three proteins that are directly formed from a gene: PSK,
Ugp1, and Glc7; the others are activated forms or complexes
involving these three proteins. The species of interest in the
pathway are Ugp1, Ugp1* and the Ugp1*Glc7. The asterisk
implies an activated form of the protein, e.g Upg1* is the
activated form of Ugp1 that is produced when PAS Kinase
modifies the Ugp1 protein [6]. Once Ugp1 is activated,
it partitions the use of cellular glucose towards structural
components at the expense of storage carbohydrates [8]. The
last species, Ugp1*Glc7, is theoretical and may be formed
by a direct interaction between Ugp1* and Glc7 [6]. It
is hypothesized that Ugp1* is deactivated by this process,
however this needs to be verified. Other key network players
include the Snf1 protein, which is required for the activation
of PAS Kinase in response to available nutrients [4].

H1

SNF1

PSK PSK*

H2

PSK*Ugp1

Ugp1*

Ugp1*Glc7

Ugp1

Glc7

Transcription
product

Transcription
product

Measured species Hidden species PutativeKnown

Fig. 3. PAS Kinase Pathway with H1 and H2 representing networks of
unobserved nodes

As shown, the current theoretical network involves ten
species, with the majority of the pathway verified. It is not
easy to directly perturb each of the three nodes of interest
since PSK affects two of the observed nodes however, it
is possible to create experiments that directly affect two
of the species. These experiments consist of turning on
or off a specified gene by modifying the yeast cell or its
environment. This is commonly done through the use of a
plasmid, a small circular piece of DNA inserted into the

yeast cell that expresses the protein in response to external
stimulus (such as the addition of a particular chemical to the
growth media). The experiments for the PAS Kinase network
include manipulation of the genes Glc7, Ugp1, and PSK. The
plasmids with PSK will directly affect two observed nodes:
Ugp1* and Ugp1. However, this will be done in an equal
amount; it will increase the activated form of Ugp1* while
decreasing the inactive form, Ugp1. The experimental setup
is shown below in Fig. 4.

Ugp1

Ugp1*

Ugp1*Glc7

pGDP-PSK

pGDP-Glc7

pGDP-Ugp1

Control Input Observed Nodes RepressionInteraction

1

2

3

Fig. 4. Experimental setup for PAS Kinase Pathway

As expected, the exact mechanisms by which phosphory-
lation and dephosphorylation occur are hidden in this for-
mulation. As indicated earlier, previous formulation required
a direct perturbation for each observed node in any given
network. However, methods or experimental conditions that
independently perturb observed nodes in biological networks
are usually not feasible. This becomes even more difficult to
do when biological networks have several observed nodes; in
many cases it is even impossible to independently perturb all
the observed nodes. However, with the extensions indicated
in Section III, reconstruction is still possible despite multiple
perturbations of observed nodes in a given experiment. This
is demonstrated for the Pas Kinase pathway as indicated in
Fig. 4

A. Reconstruction for PAS Kinase Pathway
We can define Q, P , and G for the pathway as follows:

GPAS =

G1 G2 G3

G4 G5 G6

G7 G8 G9

 (13)

QPAS =

 0 Q1 Q2

Q3 0 Q4

Q5 Q6 0

 (14)

PPAS =

P1 P2 P3

P4 P5 P6

P7 P8 P9

 (15)

However, from the experimental design indicated in Fig. 4,
we know the true representation of the control matrix P is
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as follows:

PPAS =

−PPSK PUgp1 0
PPSK 0 0

0 0 PGlc7


Where PPSK = P1, PUgp1 = P2, andPGlc7 = P9.This true
representation of P serves as the prior knowledge for this
system. Given L~x = ~b such that:
I

G4 G7 0 0 0 0
G5 G8 0 0 0 0
G6 G9 0 0 0 0
0 0 G1 G7 0 0
0 0 G2 G8 0 0
0 0 G3 G9 0 0
0 0 0 0 G1 G4

0 0 0 0 G2 G5

0 0 0 0 G3 G6


×



P1

P2

...
P9

Q1

...
Q6


=


G1

G2

...
G9



This system has 15 unknowns and 9 equations, so it is easy
to see that no unique solution exists as is. However, taking
into account a priori information given the true structure of
P , we can decompose ~x into T~z as follows:

T =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1



and ~z =



P1

P2

P9

Q1

...
Q6



The total number of variables in ~z is 9, and T is full column
rank. In this case, k = pm, given M~z = ~b (M = LT ), and
since M is square and full rank, (M)−1 exists. Therefore,
~z = (M)−1~b, hence reconstruction is possible, and the
signal structure of the system can be uniquely identified
from the overall structure of Q

V. CONCLUSION

This paper extends the identifiability conditions required
for the reconstruction of the signal structure of an LTI
system. The notion of the DSF (Q,P ), of system was intro-
duced in [2] and the required conditions for reconstruction
were also indicated. In that work, it was shown that if no
additional information is known about the system besides
its TF, not even Boolean network reconstruction, that is,
correctly identifying the presence or absence of network
edges, is possible.

This work identifies precisely the a priori information
that is necessary and sufficient for network reconstruction.
Previous results showed that a priori knowledge that P is
diagonal is sufficient to reconstruct the DSF from a system’s
TF; this work extends these results to situations where
P may not be known to be diagonal. This extension is
significant because it identifies when systems that do not
necessarily have independent perturbation of measured states
are reconstructible.

Although these results identify the precise conditions for
reconstruction of a system’s complete dynamical structure
function, future work may consider how these conditions
may be relaxed to obtain weaker characterizations of a
system’s network structure. These weaker characterizations
may include the Boolean structure of the system’s DSF, or
structurally-accurate reduced-order models of the system.
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