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Abstract— This paper focuses on the reconstruction of the
signal structure of a system in the presence of noise and non-
linearities. Previous results on polynomial time reconstruction
in this area were restricted to systems where target specificity
was part of the inherent structure, [5]. This work extends
these results to all reconstructible systems and proposes a
faster reconstruction algorithm along with an improved model
selection procedure. Finally, a simulation study then details the
performance of this new algorithm on reconstructible systems.

I. INTRODUCTION

The process of network reconstruction is the attempt to
determine the structure and dynamics of a networked system.
The simplest representation of a linear time-invariant system
is its transfer function, G. The process for determining a
system’s transfer function from input-output data is known
as system identification, (see Figure 1). Unfortunately, a
system’s transfer function contains very little information
about the internal structure of a network.

A linear time-invariant system’s state space realization
offers a more detailed representation of a system’s structure.
Although rich in information, the process of reconstruction
from input-output dynamics to the state space realization,
(A, B,C, D), known as the realization process (see Figure
1), is ill-posed since there are many possible state space
realizations for a single transfer function matrix.

Another representation of the structure of a network is a
system’s dynamical structure function, (Q, P), which was
originally introduced in [4]. Dynamical structure functions
(DSF) contain more information about a system’s structure
than the transfer function, while requiring only weak a
priori information, compared to the state space realization,
to reconstruct from input-output dynamics.

The DSF describes the network structure of a system
in the sense that the matrix ) can be interpreted as the
weighted adjacency matrix of a directed graph indicating the
causal relationships between measured states. Also, P is the
weighted adjacency matrix of a directed graph indicating the
causal relationships between inputs and measured states. The
weights on the edges of this graph are TFs between relevant
variables. This graphical representation of the DSF is referred
to as the signal structure of the system.

The DSF of a system denotes the structure and dynamics
of a linear time-invariant system at a resolution consistent
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with the number of measured states. This means if less states
are measured, the structure of the DSF would relate closely
to the structure of a system’s transfer function, while more
measured states implies that the structure of the DSF is closer
to the structure given by the state space representation of the
system.

As with a system’s state space, the process of determining
a system’s DSF from input-output data is ill-posed without
any a priori information about the network. However, given a
DSF of a system (Q, P), the transfer function for that system
is uniquely defined as G = (I — Q)" ' P, [4].

Definition 1. A system’s DSF is considered reconstructible
if there exists a priori information about the network that
creates a bijection between a system’s transfer function and
it’s DSE.
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Fig. 1: System Representations Organized by Structural
Informativity

In [6], a robust reconstruction method was presented that
allowed for the reconstruction of the signal structure of
a network when noise and nonlinearities were present in
the system. This approach calculates the optimal dynamical
structure function for all possible Boolean structures, i.e.
all possible ways of connecting the network, and then uses
a model selection technique to determine the best possible
Boolean structure. Unfortunately, iterating over all possible
Boolean structures involves a computational complexity of
O(2P), which greatly restricts its usage to that of small
networks, e.g. networks with less than three or four measured
states.

Several algorithms were proposed in [5] that improved
the computational complexity of the robust reconstruction
method from exponential to polynomial. However, the al-
gorithms proposed are for systems which are target specific,
meaning for each measured state there exists a corresponding
input that perturbs that measured state, possibly through a
hidden (unmeasured) state, and that input does not perturb



any other measured states except through the corresponding
measured state. In [1], necessary and sufficient conditions for
network reconstruction were proposed that show that target
specificity is sufficient, but not necessary for reconstruction.
This implies that there exist reconstructible networks for
which the target specificity assumption fails. This paper
extends the polynomial time algorithm to these cases, which
can be common, for example, in proteomics and other
applications.

In Section II, we extend the robust reconstruction problem
to include all reconstructible networks, not only those that
meet the target specificity assumption. In Section III, we
extend the polynomial time algorithm for dynamical structure
functions to all reconstructible networks and propose a new
reconstruction algorithm that reduces the computational com-
plexity of the reconstruction process. Section IV provides
an improved model selection procedure. Section V contains
the results of simulation studies. Finally, in Section VI we
present our conclusions.

II. ROBUST RECONSTRUCTION FOR DYNAMICAL
STRUCTURE FUNCTIONS

Previous robust reconstruction results in [6] use a method
that requires target specificity. The results in this paper
remove the requirement of target specificity to allow for the
robust reconstruction of all possible reconstructible networks,
[3].

To model the input-output data with noise and nonlin-
earities, we begin by considering an additive uncertainty
on the control structure P, as seen in Figure 2. In this
framework, the “true” system is given by (I —Q)~}(P+A),
where A represents unmodeled dynamics, including noise
and nonlinearities. Given this uncertainty, we define the
distance from data to a particular Boolean structure to be
[|Al], in an appropriate norm.
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Fig. 2: Additive uncertainty on P

Figure 2 illustrates the relationship:
Y =(-Q) P+ A)U.
This can be rewritten as:

AU=Y - [Q P m

We can then exploit the fact that U is a diagonal matrix,
based on the way experiments are performed in which only
one input is affected at a time, which gives us:

AU = lleAL|| = [[eAll = [e[[|All;

where ¢ # 0 is the amount each input is perturbed. Thus,
we note that minimizing ||AU]|| is equivalent to minimizing
[IA]]-

We highlight that this method of determining the correct
structure of a network makes the following assumptions:

1) experiments are performed sequentially, with each in-

put taking a turn,

2) the size of the perturbation on each input is of equal

magnitude.

The purpose of minimizing ||A|| is to determine the
Boolean structure with the smallest distance from given
input-output data from experiments performed on the system.
Therefore, we want to solve the following problem:

sy - P[]

Stacking the unknowns from () and P into a vector z, this
can be written as w — Lx, where w is the matrix Y stacked
into a vector row by row and

Y2 e Yn 0 .l 0 u...u, 0 ... ... 0
L=1o0..0"0.. 0 0..0~0..0[|
0 ..... 0y .o Ypn—1 0 ... ... 0 up ... up

where 1; and wu; are the i*" columns of Y7 and U7,
respectively. Note that we remove a column of y on each
row of L because the definition of () from [4] states that
the diagonal values of () are known to be zero. This means
that there are p?> — p possible Boolean structures of ) and
pm possible Boolean structures of P, yielding pm + p? — p
possible Boolean structures for z.

If we index the possible combinations of Boolean struc-
tures with v = 1,...,pm + p®> — p, then consider the v'"
Boolean dynamical structure function and denote (Q,, P,)
as a dynamical structure function with this Boolean structure.
We can then reorganize the problem so that it becomes:

&, = nf |jw— La|3 )
TEX v

where Y, is the set of all = that satisfy the constraints of the
vt" Boolean structure.

It is well known that this problem is ill-posed, since L is
not full column rank. As proposed in [1], certain elements
of = must be known a priori in order for the system to be
reconstructible, this information is contained in a (pm+p? —
p) x k transformation matrix 7" so that z = T'z, where z is the
reduced number of unknowns such that LT has full column
rank, meaning k < p2. The information contained in 7" could
come from knowing how inputs affect the system or how
states within the system interact (or fail to interact) with each
other. For example, if we knew that the system was target
specific, then we know that P is square and diagonal, which
is information that can be incorporated into 7. The complete
necessary and sufficient conditions for reconstructibility are
provided in [1].

Therefore, the robust reconstruction problem can finally
be stated as:

do = inf [[w — Mz|[3 3)
z€(c



where M = LT and (. C x, is the set of all z that satisfy the
constraints of the ¢* Boolean structure, where ¢ = 1, ..., k.

III. POLYNOMIAL TIME RECONSTRUCTION ALGORITHM

Assuming our system meets the requirements to be recon-
structible, we now develop a polynomial time algorithm for
robust reconstruction. A greedy polynomial-time algorithm
for the reconstruction of networks with target specificity was
given in [5].

The extension of the algorithm to all reconstructible
networks, including those that may fail target specificity,
requires the redefinition of several terms in the algorithm.
First, we redefine the term S, which originally represented
the Boolean structure of () in [5], to be the Boolean structure
of the vector z, which could contain elements of both P
and Q. Furthermore, we note that we utilize § as defined in
Equation 3 rather than ¢ as defined in [5]. The superscripts
on S and ¢ in Algorithm Ms and M3 refer to the number
of links (i.e. non-zero elements) for that Boolean structure,
unless otherwise stated.

Algorithm M,

Set S* to the fully-connected structure.
for j =k — 1do

Remove one link of S7 at a time to obtain a set of j
structures with j — 1 links and calculate 7! for each of
these structures.

Set S7~! as the minimum-¢’7~! structure.
end for
Set SV as the decoupled structure.
Apply a model selection procedure to the set S = {S7}.

We now propose a new algorithm, similar to the one above,

which takes advantage of two important facts:

1) Algorithm M, is a greedy algorithm that keeps a
record of only one structure for each possible structure
with j links, where j ranges from 0 to k and

2) As noted in [6], the structures with more links have
lower § scores since they have more degrees of free-
dom.

The algorithm will also make use of the following defini-
tion:
Definition 2. The term full refers to the Boolean structure of
the fully-connected network, i.e. a k x 1 vector of ones. The
term full-z, where x is a positive integer less than k, refers
to a Boolean structure with x links missing, i.e. x entries of
full-z are zeros, the rest are ones.

Example 1. [f the full Boolean structure of a system is given
by [1 1 1} T, then the possible full-1 Boolean structures are:
011", [101]", ana 110]".

First, we use an iterative procedure to determine which
links are the least likely to occur in the correct network.
The full-1 Boolean structure with the j** value set to zero is
denoted S} and its associated § from Equation 3 we denote

J
5}. Then, another iterative procedure determines a candidate

set S, with one structure (S*) for each level of sparsity (k
links). Finally, a model selection procedure is applied to this
reduced set to select a single solution.

Algorithm M;3

Set S* to the fully-connected structure.
for j =k — 1do
Set the ;" position of S} to 0 and calculate 571».
Store S]l, 6}, and j in F. (
end for
Sort F' by 5} in descending order.
Set .S to the fully-connected structure.
for d=k —1do
Remove from S the link corresponding to the 0 loca-
tion of the d*" structure from F.
Set S% to S.
Calculate §¢ for S,
end for
Set SY as the decoupled structure.
Apply a model selection procedure to the set S = {54}

Algorithm M3 reduces the overall number of structures
that need to be considered from O(p*) for Algorithm M, to
O(p®), [5].

This means that Method M3 only needs to consider the
structures circled in red in Figure 3, rather than all allowable
structures considered by Method M5 in order to determine
the correct structure.
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Fig. 3: An example problem showing § values plotted against
number of links for the allowable set of Method M5. The
structures considered by Method M3 are circled in red.

To determine when a solution can be found by Algorithm
M3, we begin with the following Lemma:

Lemma 1. A given reconstruction is solvable by Method
Ms, i.e. the true structure will appear in the candidate set,
if no full-1 link structure with a zero that does not appear
in the true structure has a lower § score than all full-1 link
structures with zeros that appear in the true structure.

Proof. If all the full-1 link structures that have zeros in
the true system have lower § scores than every other full-
1 link structure, then their combination will be selected by



Method M3 ensuring that the true solution will appear in the
candidate set. O

Theorem 1. If no noise is present in the system, Method Ms
will ensure that the true structure is part of the candidate
set, assuming there is sufficient data for reconstruction.

Proof. As noted in [6], due to the additional degrees of
freedoms provided by extra connections, all Boolean struc-
tures S’ with zeros obtained from any ordered combination
(where order refers to the iterative manner in which links
were eliminated to obtain S7) which coincide with locations
of zeros in the true structure will have a cost § = 0.
Furthermore, all Boolean structures that have at least one
zero that does not correspond to missing links in the true
structures will have § > 0.

Therefore, when no noise is present in the system all
Boolean structures with one link missing that correspond to
a missing link in the true structure will have § values lower
than all Boolean structures with one link missing that does
not appear in the true structure. By Lemma 1, this guarantees
that the true structure is part of the candidate set. O

Corollary 1. There exists ¢ > 0 and v > 0, where €
represents the noise in the system, such that if € < r, Method
M3 will ensure that the true structure is part of the candidate
set, assuming there is sufficient data for reconstruction.

Proof. This follows from Theorem 1 by continuity. O

IV. MODEL SELECTION PROCEDURE

The original robust reconstruction method in [6] noted that
finding an optimal § yields a series of candidate solutions
that have more degrees of freedom than the true network
due to overfitting, so a model selection procedure is required
to penalize extra connections in the candidate solutions. The
Akaike Information Criterion (AIC) was proposed as a model
selection procedure and is defined as:

AIC = 2k — 2In(L)

where k is the number of parameters in the model and L
is the maximized value of the likelihood function for the
model, [2].

Akaike’s Information Criterion with correction for finite
sample sizes is defined as:

2k(k +1)

AlICc = Al
Cec C+nfl<:+1

where n is the sample size.
A customized AIC was used in [6] for the minimization
of the likelihood function and was defined as follows:

oL
AICurigina = 2k + nin (7; + 1) )

However, AIC,rigina did not scale well to large networks
and the use of the natural logarithm heavily favored the
full link structure when noise was present in the system.
To overcome these issues we use a customized form of the

Akaike Information Criterion, which we will call the Chetty-
Warnick Information Criterion:

O,
N+C
where dj, is defined in Equation (2), N is the number of
unknowns in (), C is the number of unknowns in P, and
L, is the number of nonzero entries in the k** Boolean
structure. Dividing § by N + C scales 0 by the size of the
known network, since the difference in ¢ for the candidate
solutions becomes smaller as the size of the measured
network increases. Furthermore, we use only the minimized
value of ¢ rather than the In(J) because, as mentioned above,
the natural logarithm heavily favors the completed connected
network, making it difficult to correctly identify the true
network.

CWIC with correction for finite sample sizes is then
given by:

CWICy =

+ L,

2L, (Lk + 1)
N+C—-Lig+1

A comparison of the reconstruction process as noise
variance increases using Method M3 with AIC,;ginq; and
the CWIC' is given in Figure 4. The network being recon-

structed is a linearized version of the single feedback loop
defined in [6].

CWICec, =VIC, +
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Fig. 4: Comparison of reconstruction problems successfully
solved using Algorithm A3 using the original AI/C and
CWIC' as the model selection procedure.

As Figure 4 shows, CWIC performs better than the
original AIC as noise variance increases.

V. SIMULATIONS

Our empirical study will focus on:

1) Compare the accuracy of the Method M3 before the
redefinition of variables from [5] to Method M3 as
defined in Section III of this paper,

2) Comparing the accuracy of Method M> to Method M3,
where the model selection procedure is the CWIC,

3) Determining whether the accuracy of reconstruction is
degraded by increasing the size of a network, and

4) Improving the accuracy of reconstruction through im-
proved data collection techniques.



The data in these simulations are continuously sampled,
with no missing data points.

A. Analyzing Non-Target Specific Reconstruction

Fig. 5: Non-Target Specific Ring Network. Cream nodes
represent inputs and blue nodes represent outputs.

The first simulation demonstrates why a redefinition of
the reconstruction algorithm was even necessary by using
a single feedback loop with a single extra edge to make it
non-target specific, as seen in Figure 5. It is trivial to show
that this network is reconstructible.

Figure 6 shows the results of reconstruction using Method
M3 both with and without the assumption that the non-target
specific network is target specific.

As the figure shows, assuming that the system is target
specific when it isn’t leads to catastrophic failure in the
network reconstruction procedure.

Average % Solved
100

: || ——w/o Target Specificity Assumption
—w Target Specificity Assumption

80

%

20+ i i b : i

0
10 10 10° 10° 10" 10° 10'

Noise Variance
Fig. 6: Reconstruction of non-target specific network with
and without the assumption that it is target specific.

B. Comparison of Polynomial Time Algorithms

Our next result comes from the comparison of Method M
and Method Ms3. In Figure 7, we note that the two methods
seem almost indistinguishable.

We expect Method M3 to begin failing when a full — 1
structure which has a zero that appears in the true structure
has a larger ¢ value than a full — 1 structure which has a
zero that does not appear in the true structure. In this case
the true structure is not part of the candidate set provided by
Method Ms5.
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Fig. 7: Comparison of reconstruction methods Ms and Ms5.

The true structure could potentially be found in the can-
didate set generated by Method M, if the § value of the
structure with non-true zero, mentioned above, combined
with zeros that are true values is higher than the combined
values of the true zero, mentioned above, with higher §
combined with the other true zero structures.

The fact that the two methods seem almost indistinguish-
able means that this situation probably doesn’t occur for this
particular example, although that may not be true in general.

C. Increasing Network Size

Now, in order to see how the accuracy of reconstruction
degrades as the size of the network increases, we introduce
the ring of rings network and assume target specificity in
Figure 8 (inputs not shown). The rings of rings is interesting
since it has a full transfer function, but, as the figure shows,
it is clearly very structured.

Fig. 8: Ring of Rings Network

All things being equal, we now compare the accuracy of
reconstructing various subsets of the ring of rings in Figure 9.
The first set is just a single loop of 3 nodes, the second is two
loops of 3 nodes each with one connection between them,
the third is three loops of 3 nodes each with a connection
between the first and second loop and the second and third
loops, and finally the fourth is the complete ring of rings
network.
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Fig. 9: Comparison of reconstruction problems for increasing
network size.

As the figure shows, the network reconstruction process
degrades as the size of the network grows. The point of a
polynomial time algorithm is to allow for the reconstruction
of large networks, so if the reconstruction process degrades
with network size, the new algorithm isn’t very useful. We
now provide several ways in which to improve data collection
so that network reconstruction of large networks is viable.

D. Improving Results

The best way to improve results is to improve data
collection.

1) Repeated Experiments: Firstly, we note that repeating
experiments on the network can drastically increase the
accuracy of reconstruction by averaging out noise in the
system. If the cost of experiments is high, reconstruction is
still possible, but with much smaller e. This is made evident
in comparing reconstruction for increasing noise variance
with no repeated experiments to reconstruction with noise
averaging, again using a linearized single feedback loop, in
Figure 10.
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Fig. 10: Comparison of robust network reconstruction of a
single feedback loop with and without noise averaging.

The figure shows that increasing the noise averaging
allows for more accurate reconstruction.

2) Increasing Data Amount: Another way to improve the
accuracy of the reconstruction process is to increase the
number of data points collected during each experiment.
Our conjecture is that as the size of the network grows,
the number of data points that must be collected in order
to accurately reconstruct must grow exponentially, though
validating this conjecture is beyond the scope of this work.
Figure 11 shows the increase in accuracy as the number of
points collected during each experiment increases for the
case of the ring of rings network.
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Fig. 11: Improved reconstruction with increased data collec-
tion.

VI. CONCLUSION

In this paper we extended the robust reconstruction prob-
lem beyond those networks that met the strict assumption
of target specificity to include all reconstructible networks.
Furthermore, we improved upon previously proposed re-
construction algorithms by further reducing the computa-
tional complexity of the reconstruction method. Then, we
customized our existing model selection procedure to scale
with the size of the network in order to ensure accurate
reconstructions for large networks.
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