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Abstract— This paper provides an overview of our CDC tuto-
rial session covering the basics of simulation and performance
evaluation associated with stock trading via feedback control
methods. The specific trading algorithms which we describe fall
under the umbrella of “pure technical analysis” in that they are
model-free with no parametrization of the stock-price process
assumed. True to technical analysis, we adopt the point of view
that the stock price p(t) is an external input with no predictive
model for its evolution. The feedback controller adapts the
investment level I(t) based on the evolution of the trading gains
or losses over time. In the introductory talk, it is explained how
this point of view “opens doors” for new research contributions
from the control community. The simulations which we consider
are of two types: In some cases, the controller’s performance is
studied using synthetic classes of stock prices such as Geometric
Brownian Motion. In other cases, real historical prices are
brought into play. We refer to such a real-price simulation as
a “backtest.” Once we cover the trading mechanics, the notion
of “benchmark price classes,” data acquisition and coding of
algorithms, the focal point becomes performance evaluation.
That is, with g(t) denoting cumulative gains or losses, we
describe a number of metrics which are used to evaluate the
performance associated with the trajectory pair (I(·), g(·)).
Whereas the first half of the tutorial concentrates on trading
a single stock, the last half addresses multi-asset portfolios,
educational aspects and the notion of trading competitions.

I. INTRODUCTION

The main objective of this tutorial session is to address a

number of simulation or backtest issues related to stock

trading strategies which are derived from control-theoretic

considerations. We make the following distinction between

a “simulation” and a “backtest.” A simulation is carried out

using artificial data such as Matlab-generated sample paths

from a Geometric Brownian Motion. In contrast, a backtest is

carried out using historical data such as daily closing prices

and volume for some specific stock.

The tutorial begins with a very simple scenario: trading a

single stock using a rather standard feedback control system

evolving over time t ≥ 0 with controlled input I(t) being

the investment, external uncontrolled input p(t) being the

price, account value V (t) and cumulative gains or losses
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from trading the stock g(t) over time interval [0, t]. In the

later part of the session, we expand the presentation from

performance evaluation for a single stock to portfolios. In

this context, one highlight of the session is a presentation

on “trading contests.” This presentation describes how such

contests should be organized and what supporting software

is required. Our view is that such contests will not only drive

future research but also serve as an excellent educational tool

for graduate students conducting research in this area; e.g.,

see [45] and [46]. Via use of a virtual fund management

system, it becomes possible to evaluate the performance of

student traders in the context of control education.

1.1 Related Literature: We direct the uninitiated reader to

a growing body of literature with various theoretical results

involving financial markets with a control-theoretic flavor;

see [1]-[34]. Some of these papers are only tangentially

related to the material covered in this tutorial in that they deal

with issues which are not directly related to the narrow focus

here: trading a single stock or portfolio. Accordingly, for both

pedagogical purposes and to create focus for this session, we

subdivide the literature above into two categories: The first

category, called model-based approaches, includes [1]-[25],

and involves an underlying parameterized model structure

which may or may not be completely specified. Depending

on the degree of information about the parameters and dis-

turbances, possibilities exist for robustness analysis, online

identification, etc. The second category of papers, called

model-free approaches, includes [26]-[34]. That is, the stock

price p(t) is viewed as an external input with no predictive

model for its evolution. In particular, [26] and [27] analyze

a “universal” portfolio strategy, while [28]-[34] focus on

the adaptive properties of feedback control. Specifically,

the latter references fall under the umbrella of “technical

analysis” in its purest form. That is, no parameter estimation

is involved and trade signals are generated based on some

“pattern” of prices or trading gains.

While technical analysis is widely used in practice and

being studied in academia, for example, see [35]-[42], when

working in a model-free context, there is no formal theory

which provides a sound theoretical foundation explaining

why it works; e.g., see [36], [37] and [38] where this issue

is discussed. Instead of a formal theory, in the literature, the

case for the efficacy of technical analysis is made via em-

pirical studies using historical prices and statistical analysis.

The literature trail involving such empirical studies begins

around 1992 with the results in [39] which are based on

analysis of trading rules which trigger investment when the
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stock price p(t) crosses some n-day moving average with n
pre-specified in advance. On the heels of this work, we see a

number of other significant empirical studies covering other

types of trading rules and markets; e.g., see [40]-[42]. For a

more detailed perspective on this entire line of research, the

reader may wish to consult the introductory sections of the

working paper [43]. In addition, additional details regarding

the technical terms used in this paper can be found in [44].

1.2 From Theory to Practice: Other than providing the

formulae necessary to carry out simulations and backtests,

no theoretical justifications will be provided in this paper;

i.e., proofs are included in the cited references. Our main

objective here is to demonstrate how one takes a body of

theory and builds a simulation or backtest which incorporates

many practical considerations. For example, many papers in

the literature pay little or no attention to important issues

such as collateral constraints, margin calls, overnight price

gaps and sudden changes in volatility. When conducting

backtests and simulations, one of our main objectives is to

determine if promising theoretical results “stand up” when

subjected to these practical considerations. Our view is that

strong performance of a feedback control strategy in a

theorem-proving context is necessary but far from sufficient

for prediction of success in real-world implementation.

1.3 Class of Control Strategies: To demonstrate how a

theory-to-practice transition is carried out, we consider some

technical analysis methods arising from classical feedback

control loops. That is, no underlying stock-price model is

assumed and no parameter identification is used. Instead,

the trading algorithms dynamically modify the investment

level I(t) based on the profit-loss trend. Said another way, we

adopt the point of view that p(t) is to be treated as an external

input with no predictive model for its evolution. Thus, in lieu

of questionable predictive models, feedback induced robust-

ness properties play a central role in determining investment

strategies. The simulation methodology developed in this

session is useful in a laboratory-type environment where

performance and properties of strategies can be explored.

1.4 Benchmark Price Classes: Per discussion above, in

this session, we focus on simulations and backtests driven

by either empirical stock market data or from a class of

artificially generated prices p(t). We introduce the concept

of a benchmark price class which is a set of price paths P
endowed with various degrees of regularity. For example, a

standard class of price processes used in finance is obtained

from Geometric Brownian Motion (GBM); i.e., with constant

drift µ and volatility σ, the underlying stochastic differential

equation for the incremental returns on the price is

dp

p
= µdt + σdWt

where Wt is a standard Wiener process which can be viewed

incrementally in time as a normal distribution with zero as

its mean and t as its variance; i.e., the probability density

function at time t is

fWt
(x) =

1√
2πt

e−
x
2

2t .

An analogy can be made between benchmark price classes

and benchmark problems in nonlinear optimization. When

a new general-purpose nonlinear optimization algorithm is

proposed, one usually attempts to “prove its worth” by testing

it on various benchmarks. If an algorithm fails to perform

on the benchmark class of convex functions, then one could

argue that it should not be trusted for use on more general

functions. On the other hand, if it can prove its performance

over convex functions, one may then test its performance

over additional benchmark problems, such as Rosenbrock’s

Banana function, the Six-Hump Camel Function, etc. We

view trading strategies in a similar light. One must prove

the performance of a strategy over benchmark price classes

before it is to be trusted in real-world markets.

1.5 Discrete-Time Considerations: For the purposes of

simulation, we consider a discrete-time trading environment.

To illustrate using the price process above, once the period

between trades ∆t is established, the first step is to cali-

brate µ and σ on a per unit basis. Subsequently, the stock

price p(k) is updated from one time instant to the next where

the discrete argument k is used to denote the time k∆t,
measured in years; e.g., considering that there are about 252
trading days in a year, we take ∆t = 1/252 when trading

with daily closing prices. For example, with GBM prices we

work with the equation

p(k + 1) =
(

1 + µ∆t + σ
√

∆tǫ(k)
)

p(k)

where ǫ(k) is a normal N (0, 1) random variable. A bench-

mark price class is obtained by allowing (µ, σ) to range in

some pre-specified rectangle in the plane. Subsequently, the

goal is to provide results which are robust with respect to

this class of allowed parameters.

A second example of a discrete-time benchmark price class

is obtained by working with the one-period returns

ρ(k)
.
=

∆p(k)

p(k)

.
=

p(k + 1) − p(k)

p(k)

and specifying admissible sequences (ρ(0), ρ(1), ..., ρ(N −
1)) for simulation. For example, this class could be defined

by the requirement |ρ(k)| ≤ ρmax where ρmax > 0 is given

a priori as a limit on daily percentage changes. Again the

key objective is to provide robust performance certifications

with respect to this class. When trading is also included

above, with investment I(k) if we see a change in the stock

price ∆p(k) > 0 from k to k+1, the incremental contribution

to the trading gains or losses is given by

∆g(k)
.
= g(k + 1) − g(k) = ρ(k)I(k).

There are many other possibilities for benchmarks which one

can entertain. For example, letting

R(N)
.
=

N−1
∏

k=0

(1 + ρ(k)),

and noting that R(N) > 1 if and only if p(N) > p(0),
one can consider a bullish price class by enforcing the

7182



constraint R(N) > 1, a bearish price class with R(N) < 1
and a round-trip price class with R(N) = 1.

Finally, the reader is reminded that many benchmark price

classes can be constructed using historical prices. For exam-

ple, a benchmark test could involve a simulation involving

adjusted daily closing prices for all S&P 500 stocks over

some pre-specified period of time. By running simulations

with various benchmark price classes, one may explore

important aspects of trading strategies in controlled and pin-

pointed environments, allowing for a greater understanding

and exploration of their characteristics.

1.6 Short Sale Mechanics: A real-world simulation program

should also allow for the possibility of “short selling.” By

this, the following is meant: The trader has the ability to

borrow shares from the broker and immediately sell them

in the market in the hope that the price will decline. If

such a decline occurs, at an opportune time, this short seller

“covers” the position and realizes a profit by buying back

the stock and returning the borrowed shares to the broker.

Alternatively, if the stock price increases, sooner or later,

the short seller buys back the borrowed stock at a loss and

again “settles up” with the broker. In our feedback control

formulation, this is all readily accommodated by allowing

negative investment in the discrete-time trading equations.

That is, if I(k) < 0, the equation for ∆g(k) above still holds;

i.e., this quantity is positive on a price decrease ∆p(k) < 0
and negative on a price increase ∆p(k) > 0.

1.7 Other Session Considerations: An integral part of this

tutorial will involve performance evaluation. That is, given a

plot of system variables such as I(k), g(k) and V (k), we de-

scribe the software implementation and monitoring of various

performance metrics such as means, variances, Sharpe and

Sortino ratios and drawdowns in account value; see Section 3

for details. Further to the evaluation of algorithmic results,

the view which we express in this tutorial is that simulation

should drive the development of the theory.

II. SIMULATION INGREDIENTS

Figure 1 shows a block diagram of the interconnections

associated with feedback-based stock trading. At each time

instant k, information such as price p(k) and volume v(k) is

transferred from the broker to the trader. In turn, the trader

uses this information to determine an investment level I(k).
This control signal I(k) is then fed back to the broker who

executes the requested transactions. We now outline the main

“ingredients”which go into our simulations and backtests.

2.1 Price Data: Backtests involve the use of empirical stock

market data as the external price input p(k). There are

various recognized sources for such data. For example, end-

of-day closing prices, adjusted for splits and dividends can

be downloaded for free from Yahoo! Finance. Additionally,

a rather comprehensive database of historical prices at time

scales from monthly to tick-by-tick is available from the

Wharton Research Data Services for a subscription fee. In

this tutorial, we focus on backtests involving daily closing

prices that can be replicated using free data sources.

Figure 1: Feedback Loop with Broker and Trader

2.2 Information Transmission Between Broker and

Trader: In addition to qualitative information such as stock

ratings and news, most brokers also provide quantitative

information such as earnings projections and balance sheets.

As far as trade accounting is concerned, the broker provides

frequent updates on the account value V (k), gains and losses

on stock positions g(k) and stock prices p(k).

2.3 Encoding of Feedback Control Law: A simulation or

backtest program includes lines of code for the feedback

control trading strategy which, for each portfolio asset, is

a mapping from the outputs of the broker block to an

investment amount I(k). As a simple example of a feedback-

based strategy, we consider a static gain control law in which

the trader modulates the level of investment in a stock in

proportion to the cumulative gains or losses from trading

according to the formula,

I(k) = I0 + Kg(k).

That is, the trader initially invests I(0) = I0 in the stock

and then begins to monitor the cumulative gain or loss g(k)
associated with this investment. Initially the gain is zero,

i.e., g(0) = 0. However, over time, the position begins to

either make or lose money depending on the movement of

the stock. The broker passes this gain or loss information

back to the trader, who subsequently adjusts the level of

investment I(k) in the stock according to the formula above,

thus closing the loop from the trader to the broker. This

is just one simple but important example of many possible

trading schemes. To provide an additional example, one

could consider a trader who wishes to limit the trade to

some level Imax > I0. In this case, the feedback loop would

include a nonlinear saturation block and the update equation

for investment would be

I(k) = min{I0 + Kg(k), Imax}.
The feedback loop configuration is seen in Figure 2 below.

2.4 Gain and Loss Accounting: As mentioned above, an

important aspect of the broker block is that it keeps track

of the gains, losses and overall account value of the trader.

That is, at time k, the trader passes the dollar investment level

I(k) in a stock to the broker who executes any new order,

and, upon receipt of a price update p(k + 1), computes the

cumulative gain or loss g(k+1) on that investment using the
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Figure 2: Feedback Loop with Saturation

increment ∆g(k) = (∆p(k)/p(k))I(k). That is, the change

in the cumulative gain or loss ∆g(k) over a time increment

is equal to the investment I(k) multiplied by the return on

the stock ∆p(k)/p(k) over the time increment.

When a portfolio of stocks is involved, the broker keeps track

of the cumulative gain on each individual stock using the

above equation. That is, assume the trader invests in n stocks

where pi(k), Ii(k), and gi(k) for i = 1 . . . n denote the price,

investment, and cumulative gain or loss, respectively. Then,

the overall single-step trading gain is given by

n
∑

i=1

∆gi(k) =

n
∑

i=1

∆pi(k)

pi(k)
Ii(k).

2.5 Interest and Margin Accounting: In addition to stocks,

the trader’s account may also contain idle cash or borrowed

money from the broker on margin. That is, with

C(k)
.
= V (k) −

n
∑

i=1

Ii(k),

the sign of this “account cash” surplus or shortfall quantity

determines whether interest is accrued or margin charges

need to be paid. Letting rf and m denote the risk-free interest

rate and broker margin rate for borrowed funds respectively

for a period ∆t, the broker also keeps track of interest earned

or owed on cash; see below.

2.6 Account Value Reporting: Finally, the broker must

report the entire value of the account V (k) which is made

up of the stock positions plus either idle or borrowed cash.

Thus, to account for changes in the entire value of all

stock positions and earnings/charges associated with cash,

the broker performs the calculation,

∆V (k) =

n
∑

i=1

∆gi(k)+rf max{C(k), 0}+m min{C(k), 0}.

These equations define the input to output dynamics of the

broker block and are the basic equations involved in the

simulation of a feedback trading strategy. In the ∆V (k)
equation above, it should be noted that there is an implicit

assumption that the trader can accrue interest on the proceeds

of a short sale. In practice, this would only be true when the

trader’s account is sufficiently large. For a “small trader,”

the short-sale proceeds are generally “held aside” by the

broker. Accordingly, in this case the cash balance C(k)
should be appropriately modified when updating the account

value using the ∆V (k) equation.

2.7 Collateral Requirements and Margin Calls: When

formulating the simulation model for trading, it is important

to take account of the fact that the size of the trader’s

investment I(k) is limited by the collateral requirements

of the broker. For example, if this investment exceeds the

account value V (k) by too large an amount, transactions are

“stopped” due to lack of collateral. In some cases, this prob-

lem is avoided if the account has a suitably large cash balance

or if other securities in the account, not bought on margin,

provide adequate collateral. In a brokerage account with total

market value V (k) at k, in simulations and backtests, we

impose a constraint |I(k)| ≤ γV (k) with γ = 2 being rather

typical. Another possibility for inclusion in the simulations

and backtesting is the issue of margin calls which can occur

when the account value falls below the required collateral

level. This includes the possibility of forced liquidation.

III. PERFORMANCE EVALUATION

The session will include an emphasis on measures of per-

formance derived from the outputs of the simulations and

backtests. When a strategy produces various time signals

such as the gain/loss function g(k), the account value V (k)
and the associated investment function I(k), we describe

measures which evaluate the “worthiness” of these results.

3.1 Classical Measures: First, the session will cover classi-

cal measures based upon first and second order moments of

the return characteristics of the account value process. That

is, we use the return over time period k,

r(k)
.
=

V (k + 1) − V (k)

V (k)
,

and the associated sample average and standard deviation

of r(k). A popular and classical performance metric based

upon these quantities is the celebrated Sharpe ratio, for

example see [47]. It is given by

SR
.
=

r̄ − rf

sr

where rf , as previously defined, is the risk-free rate of

interest. The Sharpe ratio can be interpreted as a measure of

risk-adjusted return, or expected return in excess of the risk-

free rate per unit of standard deviation risk. Of importance is

that the Sharpe ratio uses only first and second order moment

information of the account value return distribution.

3.2 Measures Related to Use of Feedback: When feedback

is used to modulate the investment I(k), the distribution for

gains and losses can become highly skewed; see [33]. Ac-

cordingly, in the session, we also pay attention to measures

such as drawdown, skewness, and Sortino ratio, to name

a few. That is, such measures capture information beyond

the second order characteristics of the return distribution.

As one example, consider the percentage drawdown at time

k, defined as the current amount of percentage loss with
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respect to the previous peak of wealth. That is, the percentage

drawdown of the account value at time k is computed as

d(k)
.
= max

j=0,1,...k

V (j) − V (k)

V (j)
.

Note that the drawdown is a function of time, and thus it is

common to report its maximum

dmax
.
= max

k
d(k).

In the context of feedback-based trading strategies, it is

argued that these alternative measures are more appropriate

than classical metrics due to the highly non-Gaussian nature

of the generated returns; see [33] and [34].

IV. TRADING CONTESTS AND EDUCATION

The presentation in this part of the tutorial is related to the

previously discussed notion of “benchmark price classes.”

That is, performance is simply evaluated against the bench-

mark price classes, many of which are comprised of his-

torical data. This idea opens the door for a framework with

participation by many traders. Equivalently, if a single trader

carries out tests with many a multitude of different trading

strategies, we can deem the one with the strongest relative

performance as being “best.”

4.1 Experimentally-Driven Education: Motivated by the

ideas above, this part of the tutorial covers some of the

results in [45] and [46] on the development of a virtual

fund management system to benchmark the performance of

various controllers. From an educational point of view, this

setting is ideal because students can immediately participate

without expending large amounts of time learning economics

and finance; i.e., they simply “code up” their strategies and

“play” against their peers. We view this as “experimentally-

driven education” because it is natural to expect that a student

whose relative performance is weak will have incentive to

learn the underlying theory.

4.2 Virtual Fund Management System: This part of

the tutorial will include a description of a virtual fund

management system aimed at implementation of the ideas

above. Each participant is viewed as an agent interacting

with a central system which manages all players’ fictitious

investments. Per discussion above, no model or belief about

stock price dynamics is assumed. A unique feature of this

virtual market is that it uses a dynamic rating mechanism

for investor performance that rewards intelligence over luck.

The proposed rating system avoids the use of any model

of stock price evolution, and instead relies upon a measure

that adjusts for market share instead of risk. It is argued

that this dynamic mechanism is “fair” and rewards investor

intelligence over good luck, all without requiring a model

for stock price behavior.

V. SESSION OVERVIEW

As a guide to the session, this section provides highlights

of the talks to be provided. Each of the six talks will be

twenty minutes so as to be synchronized with the standard

scheduling for the conference.

Talk 1 – On the Basics for Simulation of Feedback-

Based Stock Trading Strategies: B. Ross Barmish will

cover a number of basic issues associated with setting up

and running simulations and backtests. Topics include data

acquisition, simulation engines, benchmark price classes,

simulation ingredients such as interest, margin, collateral

constraints, account value reporting and data snooping.

Talk 2 – On Performance Metrics for Feedback-Based

Stock Trading Simulations: Shirzad Malekpour will de-

scribe a number of classical performance metrics used in the

backtesting of strategies. Given that feedback-based trading

strategies tend to produce heavy-tailed distributions of gains

and losses, in addition to classical mean-variance consid-

erations and other classical measures such as Sharpe and

Sortino ratios, metrics such as drawdown, skewness, kurtosis,

probability of winning and value-at-risk will be covered.

Talk 3 – On Backtesting Pure Gain and Proportional-

Integral Stock-Trading Controllers: James A. Primbs will

cover proportional and Proportional-Integral (PI) trading

methods and then consider simulations involving trend fol-

lowing, moving averages, and technical analysis methods.

The presentation will also include the Simultaneous Long-

Short (SLS) method and a number of backtests.

Talk 4 – Exploratory Simulation Before Theorem Prov-

ing: B. Ross Barmish will describe interesting discoveries

and unexplained anomalies encountered in backtesting and

simulation. The presentation will use various case studies,

such day trading versus night trading, nonlinear trading

strategies, saturation and restart ideas, etc., to indicate how

exploratory simulation and backtesting motivate new re-

search problems.

Talk 5 – On Practical Portfolio Balancing Considerations

via Feedback Theory: James A. Primbs will provide an

overview of classical Markowitz portfolio theory versus

methods based on feedback. Of interest will be the per-

formance when correlations between stocks are uncertain

and time-varying. Case studies will be used to illustrate the

differences and potential pitfalls of each method.

Talk 6 – On Trading Competitions: Their Role in Control

Education and Research: Sean Warnick will describe the

mechanics of setting up trading competitions and their use

as a virtual laboratory for control methods in finance. A fund

management system employing a dynamic rating mechanism

to differentiate between luck and skill will be detailed.

VI. CONCLUSION

The purpose of this tutorial session is to introduce the basic

tools and techniques required for the simulation, backtesting

and performance evaluation of feedback-based stock trad-

ing strategies. Additionally, opportunities for new control

research and education will be discussed with virtual trading

contests being highlighted.
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