
On the Necessity of Full-State Measurement for
State-Space Network Reconstruction
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Abstract—Network reconstruction is an important research
topic in many different applications, including biochemical re-
actions, critical infrastructures, social media, and wireless mesh
networks. This paper shows that, for a certain important class of
systems, all the states in a system must be measured in order to
ensure correct reconstruction of the network. Furthermore, we
show that this result is strongly necessary, in that if only one state
is not measured, the structure of the recovered network could
be arbitrarily different from the structure of the actual network.
Finally, we note that our results motivate the need for dynamical
structure functions, a partial structure system representation that
reveals important structural information about the system but
requires much less a priori information (than knowledge of full
state measurements) for reconstruction from data.

Index Terms—network reconstruction, full–state measurement,
dynamical structure functions

I. INTRODUCTION

The network reconstruction problem, also referred to as
reverse engineering or network inference, is the attempt to
discover the underlying structure of a system, typically from
input-output data, [1]. Traditional system identification for
linear time-invariant systems recovers a system’s transfer func-
tion, G(s), from rich input-output data. Many reconstruction
techniques try to recover a more detailed representation of a
system, namely the state-space model, [2]–[4]. The state-space
model is generally represented by a system of equations of the
form:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t),

(1)

where x(t) ∈ Rn is a vector of the states of the system, u(t) ∈
Rm is the vector of inputs, y(t) ∈ Rp is the vector of outputs.
The A matrix is called the dynamics matrix, the B matrix is
called the control matrix, the C matrix is called the sensor
matrix, and the D matrix is called the direct term, [5]. The
one-to-many relationship between a system’s transfer function
and its state-space model is given by:

G(s) = C(sI −A)−1B +D. (2)

where s is the Laplace variable and the true state-space model
(A,B,C,D) is a minimal realization of G(s), meaning that
it is both controllable and observable.
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In this work we take the perspective that the system’s
state-space model, and thus its associated transfer function,
is fixed but unknown, and we are using input-output data
to attempt to discover not only its correct transfer function,
but also the particular state-space realization that generates it.
We assume the transfer function has been obtained through
standard system identification techniques, and we therefore
explore the conditions when the true state realization can be
identified from knowledge of its transfer function. That is to
say, we present conditions under which a transfer function has
a unique state realization.

The transfer function details the input-output dynamics of
the network, but it reveals very little structural information
about the system. The state-space realization, on the other
hand, exposes very detailed interconnection information of
the system. Structural information, in either case, is disclosed
through the sparsity pattern of the associated system represen-
tation; Example 1 illustrates how a system with an unstruc-
tured transfer function nevertheless may be very structured, as
revealed by its state realization.

Example 1. Consider the system in Figure 1, with B = I ,
C = I , D = 0 and the associated dynamics matrix, A, and
transfer function matrix, G(s), given by:

A =

 0 0 −1
−2 −3 0
0 −2 −3

 , (3)

G(s) =


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 . (4)

This system exhibits a very clear ring-structure, revealed by
the sparsity pattern of the dynamics matrix. Nevertheless, the
sparsity pattern of the transfer function would suggest that the
system is unstructured, and reveals nothing of the underlying
ring structure.

From this example we note that the state-space model is
a better representation of system structure than the transfer
function. Nevertheless, realizing a system, even minimally, is
known to be ill-posed, since any change of basis on the state
variables yields another state-space model that is consistent
with the same transfer function. In fact, without any other
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Fig. 1: System with a ring structure, given by Equations (3)
and (4).

a priori system information, the most detailed representation
that can be determined from input-output data is the system’s
transfer function [6].

The problem of structural identifiability was studied ex-
tensively in the systems theory community in the 1970’s.
Structural identifiability, or the ability to identify internal struc-
ture, was introduced and formulated in [7]. The authors also
explained the necessary and sufficient conditions for several
classes of systems; single–input single–output single–state,
diagonal dynamics matrix, observable canonical form, sensor
matrix equal to the identity (C = I), and compartmental mod-
els. In [8], the author provided conditions for identifiability
using a fair amount of assumptions and invertibility of the
information matrix. In [9], the authors provided conditions for
identifiability using an arbitrary vector of unknown parameters
of the system.

The generalization results of the structural identifiability
problem were in terms of the information matrix, or an
arbitrary parameterization of unknowns, and not in terms of
the specific a priori information of the realization needed
to recover the complete realization. In contrast, this work is
leading towards quantifying the exact information needed for
network reconstruction of all classes of systems. However in
this paper, we focus on network reconstruction of a specific
class of systems and the exact information needed to recover
the structure of this class. This could be seen as an extension of
[7], considering they show that the class of systems defined
by C = I is identifiable. Nevertheless, here we show that
this condition is not only sufficient, but also necessary for the
partial–state measurement class of systems, where C = [I 0].

II. NECESSITY AND SUFFICIENCY OF THE FULL–STATE
MEASUREMENT ASSUMPTION

For this section we will focus on systems that directly
measure some of their states. This type of system is common
in many applications, such as biochemical reaction networks.
The states of biochemical reaction networks represent differ-
ent chemical species, and the system dynamics describe the
reaction kinetics associated with the relevant chemistry. For

in vivo experiments on these systems, it is often naive to
assume that all the system states are measured, since reactions
transforming one measured species to another may involve
intermediate steps where a number of unmeasured species
can significantly influence the overall reaction. Moreover, this
situation is common in other complex systems, where our
sensor technologies are designed to measure particular system
states but can not possibly hope to capture all possible state
measurements.

Based on this idea, we say that a system has partial–state
measurement if it directly measures a proper subset of the set
of all states. The unmeasured states are referred to as hidden
states. These type of systems give motivation for the following
class of state-space models,

ẋ(t) = Ax(t) +Bu(t)
y(t) = [ Ip 0 ]x(t),

(5)

where Ip is the p× p identity matrix. A system has full–state
measurement when p = n, yielding C = I and y = x.

We will now show that full–state measurement is necessary
for network reconstruction of systems of the form found in
Equation (5) with no prior information about A and B.

Theorem 1. Consider a system as given by Equation (5), for
some p ≤ n, with no prior information about A and B. The
matrices (A,B) are uniquely specified by G(s) if and only if
p = n, i.e. there is full–state measurement.

Proof. (⇒) We will prove necessity by contraposition.
Assume p < n. This implies C =

[
In 0n−p

]
with n−p >

0, thus C 6= I . Moreover, for any system there exists a minimal
pair of matrices (A,B), not necessarily unique, that realize
G(s):

G(s) = C(sI −A)−1B. (6)

Consider the state transformation T and its inverse:

T =

[
In 0
K In−p

]
, T−1 =

[
In 0
−K In−p

]
, (7)

where K is an arbitrary (n− p)× n nonzero matrix.
The resulting transformed system, A2 = TAT−1, B2 =

TB, and C2 = CT−1, is still of the form (5), since
CT−1 = C, and clearly has the same transfer function
G(s). Nevertheless, different values of K will clearly result in
various dynamics matrices, A2, and control matrices, B2, thus
showing that p < n implies the existence of multiple minimal
realizations consistent with G(s).

(⇐) Assume n = p, C = I and that G(s) is realized by
(A1, B1, C1) and (A2, B2, C2). This implies there exists an
invertible matrix T such that A2 = TA1T

−1, B2 = TB1, and
C2 = C1T

−1. Since C1 = C2 = I and C2 = C1T
−1 the only

acceptable T matrix is clearly the identity matrix. Therefore
A1 = A2 and B1 = B2 and only one set of matrices (A,B)
realizes G(s).

This theorem states that network reconstruction cannot re-
cover a network in the class of models depicted in Equation (5)
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Fig. 2: In Example 2, if n = 9, the actual system can be a nine-node network ranging from A) to C). The hidden node is the
darker node and can affect every node. Network reconstruction on A) would yield the network in B) and network reconstruction
on C) would yield D).

unless you have full–state measurement. However, it does not
tell us how different from the actual network the result could
be if you fail to meet this full–state measurement condition. In
Example 2 we show that even if only one state in a network is
not measured, then the structure of the smaller system yielded
from a reconstruction algorithm could be completely different
from that of the original network. This is done by presenting
a pair of n× n A matrices with n− 1 measured states.

Example 2. Consider a hub-spoke network (Figure (2A)) with
n−1 nodes on the outside driven by the nth node in the center.
Systems with this structure occur commonly in transportation
systems, communication networks, and social networks, just
to name a few applications. The dynamics matrix for such a
system is of the form

A1 =

[
In−1 Γ

0 1

]
, (8)

where Γ is a column vector with no zero entries. This
structure is depicted in Figure (2A). Moreover, let B =[
0 · · · 0 1

]T
, which will be controllable when Γ has no

zero entries.
Note that the only observable partial–state measurement

configuration for this system, with only one hidden state, is
C = [In−1 0]. Nevertheless, it is easy to see that the set
of minimal realizations that preserve the same partial state
configuration (i.e. preserve C = [In−1 0]) span all possible
Boolean structures for the dynamics matrix.

To see this, consider the state transformation T = AT
1 . The

new, transformed dynamics matrix then becomes:

A2 = TA1T
−1 =

[
In−1 0

Γ 1

] [
In−1 Γ

0 1

] [
In−1 0
−Γ 1

]
=

[
In−1 Γ

Γ ∗

] [
In−1 0
−Γ 1

]
=

[
Γ̂ ∗
∗ ∗

]
(9)

where ∗ indicates a nonzero entry of the appropriate di-
mension. The non-diagonal entries of Γ̂ are equal to γ̂ij =
−γiγj = −ij, which is always nonzero by the construction of
Γ. This results in the structure shown in Figure (2C). Notice

that C = CT−1, demonstrating that this state transformation
preserves the partial state configuration of the system.

Clearly the transfer functions for both systems are equal,
since they differ only by a change of state coordinates. Nev-
ertheless, notice that the portion of the underlying realization
corresponding to the measured states, i.e. the sub matrix Γ̂ in
the transformed system, can have any Boolean structure, from
diagonal, as in Equation (8), to completely full, as in Equation
(9) (or anything in between). Thus, any network reconstruction
technique that attempts to recover this system–even knowing
a priori that the system is both controllable and observable–
can not distinguish even the Boolean structure relating the
measured nodes to each other without more information than
the input-output behavior of the system.

From Example 2 we can see that even if a network had
1000 states, and we only missed measuring a single hidden
state, then a reconstruction method may reasonably recover a
ring network (like Figure 2D), and it could actually have been
completely disconnected (like Figure 2B).

Thus we have shown, for systems of the form in Equation
(5), that reconstruction techniques which recover the sparsity
pattern of the A matrix must rely on full–state measurement. If
reconstruction algorithms do not strictly meet this assumption,
e.g. measuring 999 out of 1000 states, their solutions can be
arbitrarily incorrect. In [3], [4] they do not explicitly make
the full–state measurement assumption however it is implied
in their problem formulation. We see from Theorem 1 and
Example 2 the full–state measurement assumption must be
met for them to have a chance of success. Moreover, we
reiterate that this full–state measurement assumption can be
very difficult or expensive to achieve in practice for many
complex-systems applications.

III. DYNAMICAL STRUCTURE FUNCTIONS

The necessity and sufficiency of full–state measurements
to reconstruct systems of the form given in Equation (5)
motivates the need for partial structure representations that
require less stringent assumptions than full–state measurement,
but have more structural information than a system’s transfer
function. One such representation is a system’s dynamical



structure function, [10], which may be interpreted as a par-
ticular left factorization of a system’s transfer function such
that

G(s) = (I −Q(s))−1P (s)

where Q(s) is a strictly proper transfer matrix with zeros
on the diagonal, representing how measured states within the
system affect each other, and P (s) is a strictly proper transfer
matrix, representing how external inputs affect the measured
states. The dynamical structure function of a network is
uniquely defined for a system’s state-space model of the form
given in Equation (5), and requires less a priori information to
reconstruct than the state-space representation of a system; in
particular, full–state measurements are not necessary. See [11]
for a discussion of the dynamical structure function of more
general systems.

An important aspect of dynamical structure functions that
make them useful system representations for network recon-
struction is that they represent the structure and dynamics of a
system at a resolution consistent with the number of measured
states. So, as more states are measured in the system, the
dynamical structure function becomes more consistent with
the state-space representation, but if less states are measured,
the dynamical structure function becomes more consistent
with a system’s transfer function; when only a single state
is measured, the dynamical structure function is the transfer
function. Moreover, necessary and sufficient conditions for
ensuring a one-to-one correspondence between a system’s
input-output map and its dynamical structure function are
given in [6].

To reconstruct the dynamical structure function of a system,
it is not necessary to measure every state in the network,
which can be a difficult task for complex networks. Rather,
the conditions needed to reconstruct are very reasonable for
many applications, essentially being equivalent to requiring
target specificity in the system. Target specificity means that
every measured state in the system can be manipulated inde-
pendently, no requirements are necessary for manipulating the
hidden states in the system. Target specificity can be achieved,
for example, when studying in vivo experiments of genomic
networks where each measured gene can be switched off or
on independently. Furthermore, an assumption similar to target
specificity that meets the exact conditions from [6] can often
be achieved for proteomic networks, where not all proteins
from an in vivo experiment can be measured, but the mea-
sured proteins can be manipulated somewhat independently.
Thus, although full–state measurements may be an unrealistic
condition for many applications, thereby preventing full–state
network reconstruction, dynamical structure functions offer
a more reasonable approach to the network reconstruction
problem.

IV. CONCLUSION

We have shown that full–state measurement is necessary
and sufficient for recovering the state-space model of systems
of the form presented in Equation (5) given no a priori

information about A and B. Given this result, we showed
that even if one state in the system was not measured, that
network reconstruction algorithms could return structures that
were arbitrarily wrong. This result showed that reconstruction
techniques which claim to recover systems of the given form
without a priori information about A and B must assume full–
state measurement or they could be arbitrarily incorrect. This
result also helped motivate the need of the dynamical structure
function, a partial structure representation, as an alternative
system representation. Dynamical structure functions provide
more structural information than a system’s transfer function
and have less costly assumptions to ensure correct network
reconstruction than the state-space model. More information
on dynamical structure functions can be found in [6], [10].
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