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Abstract— Accurately identifying key parameters in complex
systems demands sufficient excitation, so that the resulting data
will be informative enough to reveal hidden parameter values.
In many situations, however, users choose inputs that attempt
to optimize the system response, not necessarily those that
yield more informative data. This leads to the classic trade-
off between exploitation and exploration in learning problems.

Farmers face a similar issue. Although they would like
to identify key soil parameters affecting the growth of their
crops, market pressures force them to manage their product
to maximize yield, resulting in less informative data. This
suggests that weather, and bad weather in particular, may play
a critically important role in creating informative data for crop
systems by driving them into low-yield regimes that no farmer
would otherwise choose to explore.

This paper investigates these issues using a standard compu-
tational model for corn and real weather data. Two model-
based measures characterizing any year’s weather pattern
are introduced. The first measure characterizes how well a
particular year’s weather pattern produces corn, according
to the model. The second measure characterizes how well a
particular year’s weather pattern distinguishes the way different
soil types affect corn growth. We then use these measures to
show that, from the perspective of corn, bad weather can indeed
be very good for distinguishing soil type.

I. INTRODUCTION

Control of uncertain systems involves a classic dilemma
known as the exploitation vs. exploration trade-off [1]. That
is, at each time step the controller must determine whether
to choose the control action that optimizes performance
based on the best current understanding of the system to be
controlled (i.e. exploitation), or to choose a control action
designed to discover more information about the system
(i.e. exploration). This trade-off is easily understood in
the context of choosing a restaurant: is it better to go to
your favorite restaurant or try something new? Whenever
decisions are made in real time without perfect information,
an explicit or implicit choice is made regarding this trade-off.

Farmers face the control of an uncertain system when they
manage their crops. Given a particular plot of land, with
a corresponding climate and environmental context, farmers
choose which crops to plant year after year, as well as how
much and when to irrigate, apply fertilizer, apply pesticides,
and weed or apply herbicides. They also manage a host of
financial decisions, such as when to sell their crop and how
to invest in equipment, labor, and insurance.

In all of these decisions, farmers face the exploitation
vs. exploration trade-off. Nevertheless, rarely do they have
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the luxury of experimenting with their crops to estimate
scientific models of their particular plot of land and how it
responds to the various management decisions they might
make; exploration is typically too expensive and risky a
prospect to consider.

Instead, farmers historically have used almanacs, rules-
of-thumb, and qualitative judgement to drive their system,
as best they can, into the most profitable position possible.
This exploitation-bias results in management decisions that
are extremely conservative, such as over-fertilizing to hedge
against the risk of rainy weather leeching an early application
and leaving the crop nitrogen starved. The result, however,
is that many different soils and growing conditions end
up producing strong yields, while the subsequent nitrogen
pollution in freshwater streams and rivers creates a growing
crisis. Every year over-fertilization pollutes the Mississippi
River, creating seasonal hypoxia, or a “dead zone,” in the
Gulf of Mexico; in 2013 this “dead zone” was about the
size of the state of Connecticut [2]. Solving this pollution
problem without sacrificing productivity will demand better
information about specific soils and crop growth conditions
so that less conservative management decisions can be suc-
cessfully deployed.

Understanding the nature of how a particular plot of land
affects crop growth, however, is a difficult task. For some
crops, years of agronomic research have accumulated in the
development of computerized models designed to simulate
plant growth under specific conditions. Calibrating these
simulations to model the behavior of a specific farm growing
a particular crop in a specific year typically demands the
specification of four types of inputs: cultivar genetic param-
eters, management decisions, weather, and soil parameters.
Cultivar type and management decisions are control inputs
and are typically chosen by the farmer to maximize profits (as
much as possible) according to an exploitation-bias. Weather
is an uncontrolled and highly variable disturbance, typically
highly uncertain until within a nominal forecast window of
about a week. Soil parameters, on the other hand, are also
typically unknown, but, unlike weather, they are typically
constant. Thus, one would like to accurately identify soil
parameters, but choosing cultivars or management decisions
to experiment with the farm is not generally economically
viable.

As a result, weather becomes a critically important source
of excitation for the system in order to identify key parame-
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Fig. 1. Driving multiple simulations of different soil types, in parallel,
with the same year’s weather pattern, w[k], generates a vector of yields for
that year, y[k]. Measures of productivity and distinguishability on y[k] then
characterize w(k] for year k.

ters, especially those associated with the soil at a particular
geographic location. While it is well known that weather is
critical to the understanding of a crop system, this research
quantifies the information in a particular weather pattern
corresponding to a specific year.

To accomplish this, we employ a specific open-source
crop model for corn called CERES-Maize [3]. Using this
model, we introduce a measure quantifying how effective
a particular year’s weather pattern is at producing corn in
a variety of soils. This productivity measure allows us to
describe how “good” a particular weather-year is for growing
corn.

Next, we use the model again to quantify how a particular
year’s weather pattern distinguishes one soil’s yield from
another. This distinguishability measure describes the infor-
mation about soil, quantified in bits, available from a par-
ticular weather pattern’s affect on crop growth, according to
the CERES-Maize simulation. Note that these measures are
model-based, in the sense that the same measures referencing
different corn simulators, such as APSIM [4], may lead to
different results. Figure 1 illustrates the computational set up
generating these measures.

Finally, using these measures, we then explore which
weather patterns, according to the productivity measure,
are most informative, according to the distinguishability
measure. The main result, encapsulated in Figure 6 and
Figure 7, illustrates that bad weather is, in fact, very good
for distinguishing soil types, according to the CERES Maize
crop simulator.

II. BACKGROUND

The measures introduced in this paper consider weather
from the perspective of a particular crop simulation for corn.
This section introduces the computational crop model, along
with brief tutorials on the impact of soils and weather on
Ccrop systems.

A. CERES-MAIZE

The Decision Support System for Agrotechnology Trans-
fer (DSSAT) is a set of software tools developed in the
1980’s by researchers attempting to apply a systems approach
to agronomic research. The main DSSAT program is made
up of several submodules that handle various agronomic
processes, such as weather, soil and crop growth. CROPGRO
is the submodule of DSSAT that handles many aspects of the
crop growth processes, such as photosynthesis, plant nitrogen
demand and pest damage [5]. In this paper, we use DSSAT
version 4.0.

CROPGRO, however, is only a generic crop growth sim-
ulator; it does not cater for the various nuances associated
with different crop types. Separate submodules were created
to handle the dynamics of specific crop types correctly. These
sub-modules include CERES-Maize (Crop Environment Re-
source Synthesis), CERES-Wheat, and CERES-Rice, among
others. In this paper we focus on the corn growth process,
which utilizes the CERES-Maize submodule. CERES-Maize
is a predictive, deterministic model designed to simulate corn
growth for a single field for one growing season [3].

CERES-Maize requires information about a farm’s loca-
tion, planting data, weather data, irrigation data, cultivar
genetic data, and soil data. A comprehensive list of input
parameters for CERES-Maize can be found in Table 2 of
[6]. Given the requested input parameters, CERES-Maize
simulates the corn growth and outputs dry matter yield,
antithesis date, maturity date, leaf nitrogen concentration,
soil nitrate concentration, soil moisture, and others [7].

In this paper, we assume no irrigation is utilized to mitigate
the effects of drought. We also choose a planting date
and cultivar genetic parameters that are consistent with the
location where weather is measured. Since we use weather
measured in various parts of Missouri, we chose a planting
date and genetic parameters for a cultivar commonly used
in Missouri. Thus, all simulations in this work use the same
genetic parameters and management decisions, allowing us
to study the relationship between weather and soils.

B. SOIL

Crop growth is heavily influenced by the soil type on any
given farm. Soil not only reflects the physical context of a
seed and the roots of a plant, but it also characterizes chemi-
cal and biological dynamics of the environmental setting for
a plant. Soil is composed of particles of varying sizes, and
its texture refers to the relative proportions of the particles,
where the particles are classified as either sand (between 0.05
and 2mm), silt (between 0.002 and 0.05mm), and clay (less
than 0.002mm), (see Figure 2).
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Fig. 2. Soil textural triangle used for determining soil texture. Image
Courtesy of USDA-NRCS [8].

The texture of the soil affects physical dynamics such as
water-holding capacity, water movement, and root growth
[9]1[10]. The physical properties of the soil also determine
how heat propagates spatially through the system.

Soil also affects the chemical and biotic properties of
a crop system. For example, one of the key chemical
processes in the system is the nitrogen cycle, which de-
scribes how nitrogen is transformed into various forms by
different processes. Nitrogen is not available to the plant as
a nutrient in all of these forms, however, so the chemical
and biological dynamics determining how much, and when,
nitrogen becomes available for use by the plant become very
important to the growth of the plant. In particular, organic
matter that is left over in the soil from the previous year’s
crop becomes an important source of nitrogen for the plant,
provided that temperature and moisture conditions favor the
action of certain bacteria that break down the organic matter
and release the available nitrogen in the form of ammonia
in a process called mineralization. This process is in direct
contrast to a reverse process, called immobilization, that
makes nitrogen less available to the plant, depending on soil
conditions.

CERES-Maize simulates these dynamics for different lay-
ers of varying thicknesses, characterizing a cross section of
soil to a given depth. Specifying a number of parameters
for each layer, as well as specifying the number of layers
and thickness of each, characterizes a particular soil type.
For example, claypan soil has a hard layer of clay at
some layer below the surface that roots cannot penetrate,
[11]. Soil scientists have sampled, identified and recorded
different soil types for different locations around the world
and recorded them in various databases. Sometimes these
databases include the CERES parameters needed to simulate
each soil [12].

C. WEATHER

There are four daily weather inputs required for CERES-
Maize: solar radiation, maximum and minimum air tem-
perature, and precipitation, [3]. Weather plays an important
part in the crop growth process, with temperature and solar
radiation seemingly intertwined, while the effects of precip-
itation depend on the soil type (especially the water-holding
capabilities of the soil) and the availability of irrigation.

Temperature and solar radiation are connected by the fact
that, in the absence of nitrogen and water stress, high solar
radiation can improve crop yields, but only when com-
bined with moderately low temperatures, which increases
crop growth duration allowing the crops to intercept more
radiation. High temperatures tend to decrease the duration
of growth, which means that crop yields also diminish.
Moderately low temperatures, although useful in increasing
crop duration, when combined with low solar radiation do
not increase yields substantially, [13].

High levels of precipitation tend to increase crop growth
unless puddling occurs, which suffocates the crops [14].
Although average precipitation may be high, if the timing
does not coincide with important growth periods, and if
water retention in the soil is poor, then yields will be ad-
versely affected, [15]. Low precipitation causes water stress,
although irrigation can mitigate the effects of poor water-
holding capacity in soil and low levels of precipitation if
regulated correctly [16].

The fact that plants die or thrive depending on various
weather conditions indicates that weather is a input parameter
with the potential to be sufficiently exciting for identifying
key dynamics in the system. Different soils react differ-
ently to different weather patterns, since their hydraulic,
thermodynamic, chemical, and biotic characteristics can vary
significantly. The ability for a weather pattern to cause very
different plant growth in different soil types, then, becomes
a key factor in its ability to inform farmers about the kinds
of soils on their farms.

III. METHODS

We introduce two measures to help understand the poten-
tial of different weather patterns to create informative data
for identifying soil type in CERES-Maize simulations. The
first, characterizing the productivity of the weather pattern
across all soils, helps us classify which weather patterns
are generally good for growing corn. The second measure,
characterizing the distinguishability of a weather pattern in
terms of causing different soil types to grow corn differently,
helps us classify how informative the weather pattern is
for identifying soils. This section presents these measures
and describes our experiment simulating CERES-Maize with
real weather data using documented soil parameterizations
characterizing soils across the continental United States.

A. CERES-MAIZE SIMULATION STUDY

In this paper, we use a set of soils from [12], which
is a DSSAT converted version of the ISRIC-WISE 1.1
database of soils [17]. This data set contains 3404 soils
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from around the world, exhibiting a wide variety of soil
textures. We restrict our attention to the subset of soils that
are contained within the continental United States. See [18]
for a description of how the soil parameters vary across this
data set.

CERES-Maize also requires us to specify a set of genetic
parameters representing the growth properties of a particular
hybrid of maize, a planting date, and various initial condi-
tions. These parameters should be chosen to be consistent
with a particular weather pattern. For instance, if we are
driving the simulation with weather measured from Des
Moines, Iowa, then the simulation should also simulate a
cultivar (genetic parameters) that farmers near Des Moines
would typically use, along with a planting date and initial
conditions typical for farmers in Des Moines. Matching
these parameter values to the weather location is important
because farmers choose different cultivars, with different
genetic properties, precisely in response to the climate at
their farm’s location; the seed one would plant in Minnesota
is different than the seed one would plant in Texas.

Wanting to keep these “extra” parameters constant across
the study, we therefore chose weather data sources that were
geographically close, for which it would make sense to
use the same cultivar (genetic parameters), planting date,
etc. Choosing Missouri as a central location among our
soil sample sites, we used a subset of the weather data
reported by the University of Missouri for weather stations in
Missouri[19] from 2001 to 2012 (see Figure 3). These sites
were: Albany, Auxvasse, Brunswick, Cardwell, Charleston,
Clarkton, and Portageville Delta. These weather data in-
cluded daily precipitation, solar radiation, and max and min
temperature.

One common corn hybrid grown in these Missouri loca-
tions is Pioneer P3162, for which the genetic coefficients
for CERES-Maize simulation were reported [20]. We also
chose April Ist as a planting date, which again is common
for Missouri. We then assume typical initial conditions (soil
water content, nitrate, and ammonia by soil layer) and a nom-
inal management practices of applying 200lbs of anhydrous
ammonia as fertilizer on March 15th. All of our simulations
thus use these same parameters as defaults, allowing us to
focus on the relationship between different years’ weather
patterns and soil type.

B. MODEL-BASED WEATHER MEASURES

Lets; € S,i=1,2,..., N be a soil type out of the set of
N available soils. Let w![k] € W be a year of daily weather
data, from October 15th of year k¥ — 1 to October 15th of
year k, k = 1,2,...,T, measured at location [, [ = 1,2, ..., L.
Each w'[k] contains all weather-related information required
for CERES-Maize to function, meaning it has a value for
precipitation, solar radiation, maximum temperature, and
minimum temperature for each day of the year. Moreover, in
this study N = 93, representing distinct soil types sampled
across the continental United States, 7" = 12, representing
years 2001 through 2012, and L = 7, representing seven
weather stations in Missouri.

Fig. 3. Map of soil samples and weather stations. The soil samples (across
the continental United States) are represented by small circles, and the
weather stations (only in Missouri) are represented by plus symbols.

Let f : (S,W) — R be the operator representing a
CERES-Maize simulation of a farm. This simulation only
takes a soil type and a weather-year as input, because all
other CERES parameters, such as planting date, cultivar
genetic coefficients, etc., have been set to the default values
described above. The resulting value, y = f(s;, w'[k]) is
called the yield for that simulation, and the matrix of yields
across all soil types, i, and weather years, k, for each
weather station [, is denoted Y}, = f(s;, w'[k]). Note that
Yt € R¥*T for each value of [ = 1,2,..., L.

CERES-Maize also has the ability to conduct an un-
stressed simulation. This means that the software runs the
simulation, but provides as much water or nitrogen available
to the plant as needed, regardless of the soil type or weather
pattern. We let g : (S, W) — R be the operator represent-
ing the unstressed simulation of CERES-Maize, and define
Uik £ g(si,w'[k]) with U' € R¥*T for each value of
I =1,2,..., L. Note that U}, > Y}/, for all i, k, and [, since
the unstressed simulation can do no worse than the stressed
simulation.

With the matrices Y and U’ thus defined, the measures
we develop characterizing each weather-year are functions
m : RV — R that operate on any column of Y' or U'.
That is to say, any particular weather year will generate a
vector y € RY, associated with some column of Y' for
some [, for which m(y) becomes an appropriate score for that
weather-year. The following subsections define each measure
precisely.

1) Productivity Measure: The first measure we consider
quantifies the general productivity of a particular weather-
year as characterized by CERES-Maize simulations over
all N soils in S. To accomplish this, we construct the
normalized matrix W' € RV*T where W}, = Y/, /U!,
for all admissible ¢, k,[. We then define the productfvity of
a particular weather year k for location [ as

1
mylk, 1) & <2 D Wi (1)

which is simply the average normalized yield for that
weather-year over all soil types.

2) Distinguishability Measure: The second measure we
consider quantifies how differently a particular weather-year
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causes corn to grow in different soils, according to CERES-
Maize. Such a measure is, in some sense, attempting to
describe the variability of the column of Y corresponding
to the weather-year of interest.

Although there are a number of measures one could use to
describe the variability of a vector, we consider the following.
Let d[k,l] € R be a normalized distribution given by

w!
dilk, 1] £ <25 2
[ ] ZE:i ta/}7k ( )
We then consider the Kullback-Liebler divergence [21], or
relative entropy, from the uniform distribution to d[k, []. This
distinguishability measure is then given by

22 dilk, 1]1o

2 dilk, ] log (Nd [, 1))

= >, di[k, 1] (log N +logd;[k,1])

log N (>, di[k,1]) + >, dilk, 1] log d;[k, ]
log N + ", d;[k,l]log d;[k, ]

= log N — entropy(d[k,])

md[ka l] £

3)
This measure describes how different the distribution of
yields, resulting from a particular weather-year over all
soils and normalized by their unstressed values, is from the
uniform distribution. Clearly if a particular weather pattern
resulted in a uniform normalized yield distribution, it offers
no information distinguishing one soil from another. This
could happen, for example, when weather is extremely corn-
friendly, resulting in every soil type producing its maximum
yield. By measuring the information distance, in bits, from
the uniform distribution, this measure is, in a very con-
crete sense, capturing the information content about soils
contained in a particular weather pattern, as least as far as
CERES-Maize is concerned.

IV. RESULTS AND DISCUSSION

Figure 4 illustrates the yields, across all soil types, that
result from CERES-Maize simulations driven by the weather
recorded at Portageville Delta, MO, in 2001. This figure
illustrates the kind of variation in yields one can observe
from different soil types.

Figure 5 shows the yields from the same weather station,
Portageville Delta, over all 12 years from 2001 to 2012. We
discovered in running these simulations that the unstressed
yield was the same across all soil types for any given
weather-year, and this value is indicated by the triangle
capping each year’s collection of yields.

The question motivating this study, however, is whether
one can characterize weather-years that result in yields that
are informative about soil type. Figure 6 and Figure 7
reveal that unproductive weather-years are significantly more
distinguishable than productive weather-years, sometimes as
much as five times more distinguishable.

This very strong negative correlation between productivity
and distinguishability appears to be intrinsic to CERES-
Maize, regardless of weather pattern or soil type. Note that
different colors in Figure 6 and Figure 7 illustrate different
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Fig. 4. Simulated yields, from all 93 soil types sampled across the
continental United States, driven by weather recorded at Portageville Delta,
MO, in 2001.
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Fig. 5. Simulated yields for each of the 93 soil types sampled across the
continental United States, driven by weather recorded at Portageville Delta,
MO, each year from 2001 to 2012. The triangle capping each year’s yields
describes the yield obtained that year from the unstressed simulation, giving
an upper bound to the achievable production that year.

weather station locations, and no matter which color one
selects, the trend across weather years has the same general
negative slope.

V. CONCLUSION

In this paper, we investigate the ability of weather to
sufficiently excite crop systems, represented by the CERES-
Maize simulation model, in order to identify key parameters
in the system. We argue that parameters characterizing soil
are often unknown, or only partially known at best, yet
farmers, compelled economically to exploit the crop sys-
tem, have little opportunity to experiment and learn these
parameters. As a result, weather is critically important for
the identification of crop systems.

Without defining a particular learning algorithm or a spe-
cific identification procedure, this work attempts to character-
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slope indicates that unproductive, or bad weather, is, in fact, the most
distinguishable, or informative, in a very well-defined sense, at least as
far as corn is concerned.
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Fig. 7. This figure is equivalent to Figure 6, but includes simple linear
regression lines against each weather station. Each color represents a
different weather station and matches the color of the data it fits.

ize different weather patterns simply based on their ability
to generate informative data for the identification of crop
systems in general, and corn, represented by CERES-Maize,
in particular. To accomplish this, two model-based measures
were introduced, Productivity and Distinguishability, and the
weather over multiple years at any single location was shown
to result in a strong negative correlation between these two
measures. This fact, illustrated in Figure 6 and Figure 7,
demonstrates that, from the perspective of corn, it is bad
weather that is very good at distinguishing soil type.
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