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Abstract— Much of the existing literature on the reconstruc-
tion of a system’s dynamical structure functions has focused
on learning the structure of a system using experiments in
which each measured state must be perturbed independently.
This work develops a reconstruction procedure that does not
require multiple targeted experiments, instead determining
the structure of the network when inputs are drawn from a
Gaussian distribution and are active simultaneously.

Although similar reconstruction procedures exist in the
literature, this algorithm removes the restriction of target
specificity, which states that each input must independently
affect a measured state in the system. This allows for the
reconstruction procedure to be applied to a larger number
of networks that were previously not reconstructible because
of their inherent structure. Furthermore, this is the first
reconstruction procedure on the dynamical structure function
to operate in the time-domain, rather than the frequency
domain, in order to avoid the overhead and inaccuracies that
could be introduced through transformations.

Dynamical structure functions, developed in [1], are a
system representation that denote the structure and dynamics
of a linear time-invariant system at a resolution consistent
with the number of manifest variables. A system’s dynamical
structure function details the relationship among measured
states denoted by the transfer function matrix Q(z), and the
relationship between inputs and measured states, denoted
P(z), where z is a variable in the frequency domain. The
dynamical structure function of a system contains more
information about the structure of the system than the
associated transfer function, G(z), which details the input-
output dynamics of the system and only contains structural
information about the manner in which inputs directly affect
measured states.

Rather than reconstruct the dynamical structure function,
many existing algorithms attempt to determine the state space
representation of a system, (A, B, C, D), since it contains all
the structural details of the system, i.e. it defines how inputs
affect internal states, internal states interact, inputs affect
outputs, and states affect outputs. However, determining a
state space model of a system is an ill-posed problem that
requires an extensive amount of a priori knowledge about
the system, beyond its input-output dynamics, in order to re-
construct [2]. Note that determining the dynamical structure
function from input-output data is also an ill-posed problem,
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but requires less a priori information to reconstruct than the
system’s state space realization [3], while having a stronger
notion of structure than a system’s transfer function.

In [6], a robust network reconstruction algorithm that
determines the dynamical structure function for systems
with target specificity, i.e. systems in which each input
independently affects a measured state, was developed. The
algorithm was improved to run in polynomial time in [7],
before being extended to all reconstructible systems in [8],
based on identifiability conditions from [3]. These network
reconstruction techniques for dynamical structure functions,
however, all were set in the frequency domain and all
assumed that experiments could be performed on the system.
In particular, these works perturbed each input to actively
probe the system and generate data informative enough to
reconstruct its network structure.

Algorithms that use passive network reconstruction meth-
ods were presented in [9] and [10]; however, those were
restricted to systems with target specificity, which requires
each input to independently perturb a unique measured state.
The novelty of the algorithm presented in this paper is that
the target specificity restriction is removed which greatly
increases the applicability of the reconstruction procedure.
Additionally, the procedure is detailed in the time-domain in
an attempt to circumvent potential inaccuracies that may be
introduced through transformations on the system.

The paper begins with the derivation of the dynamical
structure function and details the necessary and sufficient
conditions required for network reconstruction of a system
in Section I. Then in Section II, the dynamical structure
function definition is extended from the frequency domain
to the time domain. Section III details the main result,
the passive reconstruction algorithm using the time domain
representation of the dynamical structure function. Finally,
in Section IV an illustrative example of the network recon-
struction algorithm applied to a system with non-diagonal
P(z), i.e. a system without target specificity, is shown.

1. BACKGROUND

In this section we derive the dynamical structure function
representation of systems and detail the necessary and suffi-
cient informativity conditions for network reconstruction of
the dynamical structure functions, assuming no measurement
or process noise in the system.

A. Dynamical Structure Functions

This section gives an overview of the derivation of dy-
namical structure function. Consider the state space system
given by:
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Note that D = 0, while C = [I 0] which allows the
variables to be separated into the measured states, y, and
the unmeasured states, .

The next step is to take the Z-transform of the signals in
(1). Assuming zero initial conditions, we get:

| = L]

Solving for ¥(z), gives:
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U(z) = (2] — Aga) " AnY (2) + (2 — Ago) ™' BoU(2)
(3)
Substituting (3) into the first equation of (2) then yields

zY(z) = W(Z)Y(Z) + V(Z)U(Z)

where
W (z) = A1 + Avg (a] — Ago) ™' Aoy

and
V(z) = A1a (2] — Agy) "' By + By.

Let D(z) be a matrix with the diagonal terms of W (z), i.e.
D(Z) = d,iElg(VVll(z)7 WQQ(Z), ceey pr(z)). Then,

(2I = D(2)) Y (2) = (W(2) = D(2)) Y (2) + V(2)U(2)

Note that zI — D(z) is always invertible since D(z) is
always proper. We then have:

Y(z) = Q(2)Y (2) + P(2)U(2) (4)
where
Q(z) = (sI = D(2))™" (W(z) — D(2)) (5)
and
P(z) = (s = D(2))"' V() (6)

Note that since W (z) — D(z) is a hollow matrix (a matrix
with zeros along the diagonal), then Q(z) is also a hollow
matrix.

The matrix Q(z) is a matrix of strictly proper transfer
function from Y;(z) to Y;(z), i # j relating each measured
signal to all other measured signals. Likewise, P(z) is a
matrix of strictly proper transfer function from each input to
each output without depending on any additional measured
state Y;(z). Together, the pair (Q(z), P(z)) is known as the
dynamical structure function of the system.

B. Necessary and Sufficient Informativity Conditions for
Network Reconstruction [3]

In order to detail the necessary and sufficient conditions
for network reconstruction of the dynamical structure func-
tion, we introduce the following notation. Let A € C™*"™
and B € C**!. Then:

« blckdiag(A, B) = {0 B

o A_; is the matrix A without its " column,

o AT is the transpose of matrix A,

e R(A) is the range of A,

o d is the vector stack of the columns of A

o and ‘@ is the vector stack of the columns of AT,

In order to determine the conditions that are necessary and
sufficient for the reconstruction of the dynamical structure
function from data, we construct a map of the elements of
the dynamical structure function to the associated transfer
function, which can be determined using system identifica-
tion on input-output data. We begin by noting that the transfer
function, G(z), of the system in (1) is related to its dynamical
structure, (Q(z), P(z)), by the following equation

AO}

G(s) = (I - Q(2)) "' P(2) (7
which can be rearranged to get:
[1 G ] [ 58; ] =G(e)" ®)

Now, note that
AX = B <= blckdiag(A,...,A)T =0

and defining X(z) = [ P(2)7 Q(2)" ] we can then
rewrite (8) as

[ I blekdiag(G(s)7,...G(s)T) |7 (s) = G(2). (9

Since Q(z) is hollow, as noted in Section I-A, we can
abuse notation to redefine ?(z) to remove the columns that
correspond to the zero elements, reducing Equation (9) to
the following:

L(z)7 (2) = G ().
where L(z) € RP™*P°—ppm ang
L(z) = [ I blediag(Gfl(Z)T,G72(Z)T, ...7G,p(z)T) ] .

Identifiability conditions can then be established by de-
termining which elements of 7(z) must be known a priori
in order to reduce the relationship to an injective map. To
accomplish this, consider the matrix T € R —Ptpmxk gych
that

(10)

T (z) = Th(z)

where h(z) is an arbitrary vector of transfer functions.

(1)

Lemma 1. Given a system characterized by the transfer
Sunction G(z), its dynamical structure function (Q(z), P(z))
can be identified if and only if
1) M(z) = L(2)T is injective, i.e. rank(M (z)) = k, and
2) G(2) € R(M(2)).

Proof. The proof for Lemma 1 is given in [3]. O



II. TIME-DOMAIN REPRESENTATIONS OF THE
DYNAMICAL STRUCTURE FUNCTION

The dynamical structure function up to this point has only
been defined in the frequency domain in the literature. We
now extend the system representation to the time-domain,
which is preferable for the development of the passive
reconstruction algorithm. Previous network reconstruction
techniques in the literature required system identification
procedures to occur before the reconstructive step. While this
is not difficult, the added layer of complexity could lead to
worse performance in the reconstruction algorithm, which is
avoided by performing the reconstruction procedure directly
on the data.

A. Representations

Given the dynamical structure function of the form (4),
taking the inverse Z-transform yields

Yr = Q¢ * Yy + Py * uy (12)

which we call the convolution representation of the dynami-
cal structure function and where * is the convolution operator
and y; is the output and wu, is the output at time ¢.

Note that (12) can be written in the form of matrix
multiplication:

gT:Qrgr""Prﬁr (13)
where g, = [y u3 v w =
Wl Wf . WT),

0 e ] [0 )
Ql Pl
Qr= Q2 @ ,P.=|P P
Q. P,
(14)

which we call the Toeplitz representation of the dynamical
structure function.

As we will see in Section III-B stable systems result in
matrices (Q,., P,) with entries Q; and P; that tend to zero
as 7 — oo. This fact allows us to approximate (Qsc, Pso)
arbitrarily well with matrices of finite dimensions.

III. MAIN RESULT

Some previous reconstruction algorithms actively probe
the system by constructing a sequence of experiments that
independently inject an appropriate signal (e.g. a step) at each
input (while holding all other inputs at zero) and measuring
the entire system response [1], [6]. In situations where we
have controlled access to the system inputs and can conduct
such experiments, this process may be a convenient way
to generate data that is very informative about the system’s
network structure.

However, in some situations, we may not have the ability
to actively perturb each input. In these cases, the data
obtained from observations of the system will not, in general,

be informative enough to reconstruct network structure.
Nevertheless, there has been some work where researchers
have been willing to assume that the system is intrinsically
perturbed by independent stochastic processes acting on
each input [9], [10], although these results assume target
specificity. Here, we drop the target specificity assumption,
but do assume that the inputs, though not controlled, are
measured and provide a persistency of excitation on the
system to ensure the input-output data is rich enough for
reconstruction.

A. Learning the Toeplitz Representation

The process of learning the Toeplitz representation in (13)
is similar to learning the frequency-domain dynamical struc-
ture function using the necessary and sufficient conditions
developed in [3]. First, we will extend those conditions
from the frequency-domain to the time-domain, then we will
discuss how the amount of data we collect will affect our
estimate of 7 in (13) and thus, our current understanding of
the system’s structure and dynamics.

1) Necessary and Sufficient Conditions for Time-Domain
Network Reconstruction: Given (14), each Q; has p?> — p
unknowns and each P; has pm unknowns, which means in
Q, and P, there are a total of (p?> — p 4+ pm)r unknowns.
Now, take (13) to be rewritten as

gr = [Q'f‘ ]57} |:gi|

Taking the transpose of both sides yields
AT

i =l o) |3

Next, we can write:

0 Qf .. QF

- - - S, 0 .. 0 T
A R A = -
T

0 .. 0 PF

which is equivalent to the series of equations

yi = 0, ;
T r 7 |@1
Y2 = U )
2 [3/1 1] [PlT}
T
2
T T T T T il
Y3 = [3!1 Y2 Uy UQ] pr , ete.
2
P
Finally, defining
p=[Qf .. @ P .. P
allows us to write (13) as
A=
y=L2z
where L € Rf PX(Pz_p+Pm)’”, f is the number of data points

collected, § = [y{ ... ¥l . yf yﬂT’ and



yi 0 0 0 0 0 w 0 0 0 0 0
0 0 0 0 0 0 0o 0
0 0 oF 00 0o 0 0 uF 0 0 0
L=
yf 0 0 ypy 0 0 u? 0 0 ufl 0 0
0 0 . 0 " 0 0 . 0 .. 0 .0
L0 0 yf . 0 0 y o0 o0 u? e 00 b

Now, given a static matrix

3
Ts Ty

representing the a priori information in the frequency do-
main, where 77 is the a priori information about the system
that indicates how the reduced elements of Q(z) map to
the original elements of Q(z), with T performing a similar
function from the reduced elements of ()(z) to the original
elements of P(z), and so on.

Note that 7' is the a priori information that maps the
reduced element of each @); and P; for i« = 1,...,7 to the
unreduced elements of the appropriate matrices, and that the
a priori information applies to each ; and P; in the same
manner, yielding

T, .. 0 T .. 0

. o ..o 0T

=\, . o1 .. o (s)
0 .. T3 0 .. Ty

Note if T is not static, T is determined from the inverse
Z-transform of 7.

This leads us to the necessary and sufficient conditions for
passive reconstruction:

Theorem 1. Given a system characterized by the transfer
function G, its dynamical structure function (Q, P) can be
identified in the time domain if and only if

1) M = LT is injective, i.e. rank(M) = kr,

2) § € R(M), and

3) r chosen sufficiently large.

Proof. This follows directly from the results of Lemma 1,
where 7' is constructed by iteratively applying T to the
entries Q; and P; for i = 1,...,r as shown in (15) if T
is static. If T is dynamic, T is constructed by taking the
inverse Z-transform to get 7} and then applying each T; to
Q; and P; fori=1,...,7. O

2) Incremental System Understanding: Here we discuss
the notion of choosing r sufficiently large, specifically look-
ing at the Boolean structure in terms of Z;:O Q; from
reconstructed Toeplitz representation for small values of 7.
This will help us inform our understanding of why part 3 of
Theorem 1 is a necessary condition in the time domain.

Example 1. Consider a system S where the a priori infor-
mation required for reconstruction is the Boolean structure

of P(z). In this scenario, the Boolean structure of

00 1
Qz)= {1 0 0,
010

but this information is unknown a priori.

Using the necessary and sufficient conditions for re-
construction without r chosen sufficiently large yields the
following Boolean structures

T 2 \ 5 |28 | 120
01 1]|{fo 1 1]|foo 1]|{fo o0 1
Qvoor | |1 0 1|1 0 0| |1 0 0f|]|1 00
1 10|t 1o0of|[1 1o0f|[010
(16)

Note that although r = 120 yields the smallest r required to
determine correct Boolean structure, a larger v value may
be necessary in order to learn the correct dynamics of the
system.

This example illustrates that the reconstruction procedure
improves gradually as more data is collected from the system.

B. Learning the Convolution Representation

Given the Toeplitz representation of the dynamical struc-
ture function, the convolution representation can then be
determined. First, it is necessary to determine the delays on
each link. Assuming zero initial conditions, the number of
time steps it takes for a link in Q(z) or P(z) to become non-
zero is the definition of the delay on the link. This means
that the first non-zero element of the (z,7)"" entry in Q i or
(i,7)™ in P, for some k,k € (1,...,r), the delays on the
links are given by w5y = k or wiG ) = k, respectively. If
there are no non-zero elements, then no link exists. Given the
links, we then attempt to learn the functions of the respective
links in the time-domain, the form of which is derived in
Theorem 2.

Theorem 2. Given that
Q(z2) = (s — D(2)) Y (Ara(z] — Ax) 1) Agy + A1)
and
P(z) = (I — D(2)) " (A1 (2] — Ag) ™" By + By)

the entries of the corresponding inverse Z-transform will
have the form

W
aibe o + Z bi(ci)*

=0

a7

where wy, is the number of delays in the corresponding link.

Proof. Consider the definition of the inverse Z-transform
which states
o] = Z27H{X(s)}

= Lj;c)((z)zt_ldz

2711

= Y [Residues of X (z)z!~! at the poles of X(z)].
The residue of X (z) at the pole z is denoted
Res(X(z),20) = X (2)(z — 20)| -



Since they are strictly proper transfer function matrices,
the entries of ()(z) and P(z) can be written as the sum of

partial fractions of the form zf%i. Then, defining

Hji(z) = Qjr(z)z"""

implies
w t—1

Hj,k(z) _ Z ;2"

i
The sum of the residues is then evaluated as
Yo Res(jn(2), Bi) = ais'!
= api!
= 28
(e

This gives us b; = %% and ¢; = 8;, Vi € (0, w). Assuming

B
zero initial conditions then yields a = —Y_:"  b;.

Bi

O

Given the form in Equation (17) which represents the
entries in )y and P;, we can then determine each entry
by fitting toegther the );’s or P;’s using a nonlinear least
squares algorithm. This process can be done in MATLAB
using a custom curve fit. In order to tune the fitting process,
we used the following heuristic:

1) Step 1: Change the default maximum function evalua-
tions of the model and maximum amount of iterations
to 2r and attempt to fit the parameters.

2) Step 2: If a solution is not found, iterate through all
possible maximum function evaluations and maximum
amount of iterations from v = 1, ..., 3r.

3) Step 3: If a solution is still not found, then randomly
change the start point of the fitting algorithm and repeat
Steps 1 and 2 until a solution is found or a stopping
condition is met, using the best solution so far.

C. Finding the Dynamical Structure Function

Once the convolution representation has been determined,
take the Z-transform of Q(¢) and P(t) to get the dynamical
structure function Q)(z) and P(z), which is the output of the
algorithm.

IV. NUMERICAL EXAMPLE

The following example reconstructs a dynamical structure
function, (Q, P), with non-diagonal P, to illustrate that this
method can reconstruct systems without target specificity in
the time-domain that were not previously reconstructed in
this manner.

Example 2. (Non-Diagonal P) Consider the following sta-
ble state space system:

[75 0 0 0 0 12 14 0 -14
-1 =35 0 0 0 0 0 —-.25 0
0 0 85 -1 0 0 0 0 .75
zlk+1] = 0 -7 0 95 o0 0 x[k] + 0 0 0 ulk]
0 0 43 0 -6 0 0 0 0
L 0 0 0 0 2 .55 0 0 0
10 0 0 00
ylk] = [0 1.0 0 0 0]k
001000
(18)

the corresponding dynamical structure function is

0 0 41.28
S (42—3)(52+3)(20:—11)
Q) = |m7 0 0
0 292 0
L (20:—17)(202—19)
r_5.6 —5.6
4z—3 95 4z—3
Pz) = 0 o047 105
0 0 20z—17

(19)
The corresponding transfer function is full, so it does not
detail any internal structure, only that all the inputs affect
all the outputs, even though the system has a clear ring
structure, as seen in Figure 1.

Fig. 1: The structure of the dynamical structure function
of the system in (18). Light nodes represent inputs and
dark nodes represent measured states, with links representing
causal dependencies among the manifest variables.

The convolution representation of the dynamical structure
function, rounded to three decimal places, is then given by

QM®)[1,3] = .51(.75)" — .11(—.6)" — .816(.55)" + .4165
QM®)[2,1] = .286(—.35)" —.2860

Q)[3,2] = 7.684(.95)" — 8.588(.85)" + .9044
P(#)[1,1] = 1.867(.75)" — 1.8674

P(t)[1,3] = —P(t)[1,1] = —1.867(.75)" + 1.8678
P#)[2,2] = .714(-.35)" —.7145

P(t)[3,3] = .882(.85)" —.882§

(20)
where § represents the Kronecker delta 0, . This example
uses the passive reconstruction method to reconstruct the
dynamical structure function of the system in Equation 18
using simulated data and no noise. Note that P(t)[1,3] =
—P(t)[1,1] is part of the a priori information used to ensure
that the system is reconstructible.

For this example we chose v = 600, noting that the longest
decay (slowest dynamics) is only around 150 time steps.
Typically r should be chosen so as to overestimate the actual
decay of the system, as in this case. 2000 data points were
collected, and the reconstruction fits are shown in Figure 2.
The number of data points was chosen because, after being
reduced for a priori information, the system has 9 unknowns
in Q(z) and P(z), which means there are 9 unknowns in
each of the (Q;, P;) pairs. This means that the matrix M,
Theorem 1, will have 5400 columns, which comes from k = 9
and r = 600. In order to achieve full column rank for M we



need at least that many rows, which is why at least f = 1800
data points are required to reconstruct the system given that
p=3.

Using the described fitting process, we can determine the
entries of the convolution representation of the dynamical
structure function to be:

Q(t)[1,3] = .5096(.75)" — .1108(—.6)" — .8158(.55)"
+.4176

Q(t)[2,1] = .2839(—.3556)" — 28395

Q(t)[3,2] = 7.684(.95)" — 8.588(.85)! 4 .9046

P(t)[1,1] = 1867( 5)t — 1.8676

P(t)[1,3] = —P@)1, ]:—1.867(.75)t+1.8675

Pt)2,2] = 7143( 35)t — 71435

P()[3.3] — .8824(85)" — 88245

(21
which is almost exactly the same as the actual convolution
representation in Equation 20. This example shows it is
possible to reconstruct a system without target specificity in
the time-domain without active experiments.

V. CONCLUSION

This paper presents a passive network reconstruction algo-
rithm, allowing for the structure and dynamics of a system
to be determined directly from input-output data without the
need for multiple experiments and removing the restriction
of target specificity that plagues many similar reconstruction
methods. Furthermore, an illustrative example showed the
effectiveness of this procedure on a system without target
specificity. Future work will focus on ensuring the algorithm
is robust to measurement and process noise.
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Fig. 2: Each figure corresponds to an unknown entry in ¢
and P, with order as in (20). The line in each represents the
simulated results of the corresponding equation. The dots
represent the reconstructed values of each unknown entry.



