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N System Representations

m There are many ways to represent a system

m Different representations of the same system detail different
notions of structure

m Three common system representations:
m Transfer function
m State space model

= Dynamical structure function (linear dynamical graphs)



N System Representations

m Transfer function:

Closed-loop paths
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N System Representations

m Transfer function:

Closed-loop paths
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m State space model:
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N System Representations

Open-loop paths
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Data Models
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Derivations of Less Informative Models

Data Models

|
Identificatioa |
| ] | |

| |
Transfer Dynamical Structure State Space )
Functions Functions Models
G (Q, P) (4,B,C, D)

G = (I-Q)'P

[W V]=[A,, B,]+A(sI-A,)) ! [Ay; B,] ->
Q=(sI-Dy,)"(W-Dy,) and P = (sI-D,)"'V
G = C(sl-A)'B + D

m Well-posed problems
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N Network Reconstruction

Models

Transfer Dynamical Structure State Space )
Functions Functions Models
G (Q, P) (A,B,C, D)

m NOT well-posed problems

m Extra information beyond input-output data is required
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m Target specificity refers to a property of the system in which:
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N Target Specificity

m Target specificity refers to a property of the system in which:

m  Each input affects other measured outputs only through a particular measured output
associated with that input, and

m Every measured output is associated with a distinct input which affects it first

m Many reconstruction algorithms assume target specificity, since it is sufficient for
reconstruction

m Target specificity is not necessary for network reconstruction

Target-specific Non-target-specific
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m Network reconstruction where:
m Experiments performed by individually perturbing each input
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Passive Reconstruction

m Network reconstruction where:

m All inputs perturbed simultaneously, usually by noise

Inputs
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T Main Result

m Overview:
= Time domain representation
m Necessary and sufficient conditions in time domain

m Network reconstruction in time domain



N Frequency Domain Representation

m Dynamical structure function defined in the frequency domain

Y(2)=0()Y(2)+ P(2)U(z)



Time Domain: Convolution
Representation

m Take the inverse Z-transform of

Y(2)=0(2)Y(2)+P()U(z)

to get the convolution representation

ylk]=Olk]*ylk]+ Plk]*ulk]

which can be rewritten as

y, =0y, +Fu,



N Time Domain: Toeplitz Representation

where
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N Time Domain: Toeplitz Representation

where
0 L L ' 0 ' T . . ST
oy - Pl y,=| ylI 2] .. ylr]
0,=| 0121 O[] . P=| P[2] Pl ° ] .
o o 7=l w2l u[r]T]

Stability: 7 — % => Q[r] — 0 A P[r] — 0‘




+ .
Reconstruction Process

m Learn the Toeplitz Representation
m Calculate the Convolution Representation

m Determine the Frequency Domain Dynamical Structure
Function
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Learning the Toeplitz Representation

yr=err+E’_
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Learning the Toeplitz Representation

$=ILx
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Learning the Toeplitz Representation
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Learning the Toeplitz Representation

$=1Lx

Does not have full column rank,
requires a priori information to
ensure a unique solution
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Learning the Toeplitz Representation

m Create T =

m where
m T, 1is a priori information about how to reduce Q(z) given (Q(z)
m T,is a priori information about how to reduce Q(z) given P(z)
m T, 1is a priori information about how to reduce P(z) given Q(z)
m T,1is a priori information about how to reduce P(z) given P(z)



Learning the Toeplitz Representation

m Create T =

m where
m T, 1is a priori information about how to reduce Q(z) given (Q(z)

1
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Learning the Toeplitz Representation

m Create T =

T, 0 T, 0
A_| O T 0 T,
0




Learning the Toeplitz Representation
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Learning the Toeplitz Representation

m Theorem 1: Given a system characterized by the transfer
function G(z), its dynamical structure function (Q(z), P(z)) can
be identified in the time domain if and only if

» M =LT isinjective, i.e.  ERM) and rank(M) = kr
m 7 chosen sufficiently large.



N Calculating the Convolution
Representation

m Theorem 2: ... the entries of [the convolution representation
of the dynamical structure function (Q(z), P(z))] have the form:

ao, , + E b,(c,)
i=0

where w is the number of delays in the corresponding link.



Determining the Dynamical Structure
Function

m Given the convolution representation of the system, we can
take its Z-transform to get the dynamical structure function



N Numerical Example

m Consider the following state space system:
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N Numerical Example

m Simulate with r = 600
m Solve for Q, and }_)r

m Assume structure of P(z) known a priori
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Numerical
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N Numerical Example

m Given the Toeplitz representation (2., P), find convolution
representation using a custom curve fit in MATLAB with:

m This yields:

akét,o + Ebi(ci)t
i=0

Q(k)[1,3]=.5096(.75)" —.1108(-.6)" — .8158(.55)" + 4175
Q(k)[2,1] = 2839(-.3556)" — 28398

Q(k)[3,2] = 7.684(.95)" —8.588(.85)" +.9044
P(k)[1,11=1.867(.75)" = 1.8676

P(k)[1,3]=-P(k)[1,1]

P(k)[2,2]=.7143(-.35)" —.714368

P(k)[3,3] = .8824(.85) — 88246



N Numerical Example
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N Numerical Example
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N Numerical Example
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N Numerical Example
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N Numerical Example
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N Future Work

m Many open problems, including:
= What is the best way to choose r?
m Can we reconstruct in the time domain without measuring inputs?
m Characterizing the inputs to ensure informative data

» Time domain reconstruction with measurement or process noise
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