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ABSTRACT 
 
 

 
A MACHINE LEARNING APPROACH TO INTRA-MARKET PRICE IMPACT 

MODELING USING NASDAQ LEVEL-2 ITCH DATA 

 
 
 

Jacob Bruce Brewer 

Department of Computer Science 

Bachelor of Science 
 
 
 

This research explores how to leverage system identification and machine 

learning to predict stock prices using NASDAQ order book data. It begins by providing 

essential background information of stock market trading mechanics and then gives a 

brief explanation of how machine learning is used for feedback system identification. The 

project then applies these principles to create a price impact model of NASDAQ stock 

prices. After describing detailed results, we show that prediction margins appear to 

increase for our testing set when we incorporate order book data. This project is a core 

element of a greater project, which explores the possibility of stock price manipulation 

and control—currently a great concern to organizations such as the Department of 

Homeland Security (DHS). Since our findings suggest that stock prices on our sampled 
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data set are at least slightly more predictable than a baseline algorithm when 

incorporating order data, it is likely that the growing number of similar high frequency 

trading algorithms would be affected by a significant change in the order distribution. 

This would mean that stock prices could be influenced without cost by strategically 

placing orders. 

Keywords: control theory, price impact modeling, system identification, terrorism 



   

 v 

ACKNOWLEDGEMENTS 

 

 

 

I am very grateful for the mentoring, support and education that made this 

possible. Thank you: Sean Warnick you for believing in me and for being truly invested 

in the success of you students. Thank you Galena Chenina, my precious wife, for 

inspiring and supporting me and even helped me debug my code on one occasion, as I 

prepared this thesis.  I am also grateful for the opportunity to study at Brigham Young 

University. 

This research was supported by the U.S. Department of Homeland Security and 

the Brigham Young Office of Research and Creative Activities.   

 



   

 vi 

TABLE OF CONTENTS 
 
 
 

Title and signature page ....................................................................................................... i 
Abstract .............................................................................................................................. iii 
Acknowledgements ..............................................................................................................v 
Table of Contents ............................................................................................................... vi 
List of Figures .................................................................................................................. viii 
List of Tables ..................................................................................................................... ix 
 

 

1. INTRODUCTION ...........................................................................................................1 

2. SYSTEM DESCRIPTION ...............................................................................................4 

2.1. Order Book .........................................................................................................4 

2.2. National Security Concerns ................................................................................6 

3. SYSTEM IDENTIFICATION AND MACHINE LEARNING  .....................................8 

3.1. System Identification ..........................................................................................8 

3.2. Machine Learning Used in System Identification ..............................................9 

4. DATA & ECONOMETRIC FEATURE SELECTION  ................................................11 

4.1. Data Source ......................................................................................................11 

4.2. Feature Selection ..............................................................................................13 

5. ALGORITHMS USED ..................................................................................................16 

5.1. Baseline Algorithm – The Naiive Trader .........................................................16 

5.2. Selected Machine Learning Algorithms ...........................................................17 



   

 vii 

6. RESULTS ......................................................................................................................19 

6.1. Initial Attempts Predicting Google ...................................................................19 

6.2. Facebook Prediction .........................................................................................21 

7. CONCLUSIONS ...........................................................................................................25 

7.1. Further Work ....................................................................................................26 

BIBLIOGRAPHY ..............................................................................................................28 

 
 
 
 
 



   

 viii 

 
LIST OF FIGURES 

 
 
 
 

FIGURE 1: The Order Book for Citibank ...........................................................................5 

FIGURE 2: Training and Test Set Accuracy for the Neural Network ...............................23 

 
 



   

 ix 

LIST OF TABLES 
 
 
 
 

TABLE 1: NASDAQ Order Data 2014 .............................................................................11 

TABLE 2: Initial Results – Predicting Google Stock ........................................................19 

TABLE 3: Predicting Google Stock ..................................................................................20 

TABLE 4: Initial Results - Predicting Facebook Stock .....................................................21 

TABLE 5: Predicting Google Stock ..................................................................................22 



   

 1 

Chapter 1 

Introduction 

 

Currently the majority of US equity stock trades that take place are performed by high 

frequency trading algorithms, accounting for 60-73% of all stock exchange volume [20]. 

High frequency trades are financial stock trades that are operated entirely by 

sophisticated computer algorithms that execute purchases or sales of a stock within 

microseconds. High frequency trading algorithms typically base stock purchase and 

selling decisions on available financial data, such as the order book, and use machine 

learning to optimize for the best possible return on investment. However, in the wake of 

the 2008 financial crisis, regulatory institutions began paying more attention to this 

trading automation since in many instances high frequency trading has amplified the 

impact of local crashes, leading to market collapses. However, with current market 

monitoring and control mechanisms, such “high-frequency-trading induced crashes" are 

difficult to predict and take preventive measures against. 

While investigating this domain, the Department of Justice has indicated the 

possibility of altering stock prices by placing limit orders (which do not immediately 

result in a stock trade) on the order book. This is also a concern to organizations like the 
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Department of Homeland Security (DHS) since, the ability of individuals or 

organizations to algorithmically drive market prices up or down, without incurring any 

cost of their own, opens the door to hazardous market manipulation, market volatility and 

even potential economic attacks on the United States and its citizens [1]. A part of this 

research project is to explore the potential opportunity of high-frequency traders or 

terrorists to control US market prices by artificially biasing the market order book.  

The dynamics of the order book has been modeled by Biais et al. [6], Cont and De 

Larrard [18], Hall and Hautsch [4], and Cont et al. [19]. High-frequency trading order 

strategies were researched in Cvitanic and Kirilenko [13], Guilbaud and Ph [10], and 

Gatheral and Schied [14]. The possibility for attack on US equity markets using the 

much-studied phenomenon of information cascades has been researched by Alevy et al. 

[12], Bikhchandani and Sharma [21] and Devenow and Welch [3]. Recent work by 

Easley and Kleinberg [8] explores another potential weakness in equity markets related to 

network congestion and network market stability. This research builds upon the ideas 

mentioned here and uses control theory and machine learning to first determine order 

distribution influence on price and second to measure the potential surface of attack 

through placing dummy orders on the NASDAQ order book. 

The next section begins with a review of basic order book dynamics (Chapter 2). 

Chapter 3 provides an overview of the core elements of system identification and also 

provides a comparison of system identification and machine learning. Chapter 4 walks 

through the data set and the econometric feature selection process for the chosen machine 
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learning approach to system identification. Chapter 5 describes the machine learning 

models and baseline algorithms. Chapter 6 describes the final results. Chapter 7 

concludes by summarizing what we have learned and describes future work. 
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Chapter 2 

System Description 

2.1. Order Book 

There are two primary types of stock orders in US equity trading markets – limit orders 

and market orders [15]. A limit order is a promise to buy or sell a specific number of 

stocks at a given price. This order sits on the order book until it is either cancelled or until 

a match is made to buy or sell the stocks by an electronic matching engine. A market 

order does not sit on the order book; it executes immediately at the best available price. 

These orders are processed in sequence of when they were received. In the case that a 

new buy or sell order is placed, and there are multiple limit orders waiting on the other 

side ready to execute at the set price, the computerized priority rules determine that the 

order, which has been on the books the longest executes first. Once this match is made, 

the order executes, stock possession transfers and the broker or dealer makes a small 

fixed trading commission. The status of the new lowest sell price and highest buy price is 

updated almost instantaneously for worldwide traders to monitor.  
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FIGURE 1. The order book for Citibank stock trading on NASDAQ at 10:00 a.m. on 

March 7, 2014. Red bars indicate the number of shares bid to purchase the stock at each 

price while blue bars represent the number of shares offered for sale at each price. 

 

The pending limit orders can be visualized using a histogram. Figure 1 shows the 

order book for Citibank stock traded on NASDAQ at 10:00 a.m. on March 7, 2014 [7]. 

The red represents the limit orders to buy at set prices along the x-axis. The blue 

represents limit orders to sell. The y-axis reflects the total number of shares on the order 

book at the selected price. In this case, a market order to buy 5,000 shares would 

consume the 5,000 lowest priced shares for sale, represented by the left-most blue bars (at 

approximately $50.00). Likewise, any arriving market order to sell Citibank would sell to 

the highest priced order to buy on the order book (shown in red). A market order to 

purchase 10,000+ shares would be matched to multiple blue bars to meet the large 
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purchase order. This order execution may even leave a gap of empty space between the 

blue and the red bars. This gap is usually narrow among highly traded stocks, and wider 

among less popular stocks and is called the bid-ask spread. 

 

2.2. National Security Concerns 

Buying or selling sizable volumes of shares will clearly affect the spread and stock 

prices. However, in recent years, organizations like the Department of Homeland 

Security, have become increasingly concerned that prices could be artificially 

manipulated by placing orders outside of the spread region, that ultimately would not 

even execute [2]. This means that a trader or an attacker could shift market prices without 

incurring any cost.   

The introduction of algorithmic trading has increased the possibilities for such 

market manipulation and attacks. In efforts to gain marginal investment advantages, high 

frequency traders are incorporating as much financial data as possible, including the 

order book, to guide automated algorithmic trading decisions. For example, when a 

trading algorithm spots a rapidly increasing number of sell limit orders, this may indicate 

to the trading algorithm that traders do not want to hold this stock anymore and the price 

will soon drop. If thousands of automated trading algorithms across the globe 

simultaneously act accordingly, then this could trigger what is called “a flash crash” even 

though the responsible limit orders did not even execute. This form of attack, known in 
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one of its forms as “spoofing,” is potentially responsible for the flash crash of May 2010 

[5]. 
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Chapter 3 

System Identification and Machine Learning 

3.1. System Identification 

In order to determine how big the limit-order spoofing threat is, we must first model the 

behavior of the order book system using system identification. System Identification is 

the process of using statistics to create models that based on measured data, reveal the 

dynamics of the system. There are three general steps in system identification as 

mentioned in Ljung’s guide on System Identification [17]: 

• Obtaining Useful Data 

•  Generating a Set of Candidate Models 

•  Determining Which Candidate Models is Best 

Step 1: The Data – Ideally, the data used to identify the system is based on 

carefully designed experiments that show the input-output behavior of the system under 

as many circumstances as possible. The topic of experiment design is the study how to 

maximize the “informativeness” of this data. In our study of the order book dynamics, 

our research team does not have the funds to directly experiment by placing billion-dollar 

limit orders on the NASDAQ order book to see how the system behaves, but enough 
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order book history, with its market fluctuations, is available that our data set is reasonably 

informative. 

Step 2: Candidate Models – A series of candidate models are generated using a 

variety of possible scientific methods. This step of the process is iterative and will often 

take the most time and effort. 

Step 3: Assessment – There is a process for determining which of the models is 

the best model and should be further explored. This is typically done through 

experimentation and simulation. After this step is completed, the process may return to 

generating more candidate models (Step 2), or terminate if a stopping criteria is met. 

 

3.2. Machine Learning Used in System Identification 

Machine learning is similar to system identification, although there are some subtle 

differences. Both machine learning and system identification involve what is called 

“learning a problem.” Both of them use similar steps: 1) Data 2) Candidate models and 3) 

Selection Criteria, as discussed earlier. Both machine learning and system identification 

can be used to predict the future and both are black box models. However, machine 

learning addresses this problem by refining a model class composed of functions and in 

the case of system identification the model class is not composed of just functions, but 

rather dynamic systems. Another difference is that in system identification there is a state 

variable; in machine learning there is not. Since a descriptive feedback system has a state 
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variable, it determines not only what a future output will be, but also the future state. 

Machine learning on the other hand, uses the current state to predict a selected output [9]. 

Another difference is that system identification is strictly linear, while machine learning 

can be non-linear.  

While machine learning is not identical to system identification, they both serve a 

similar purpose. In fact, machine learning can often prove to be more predictive of future 

state and behavior than system identification, even though it does not use explicit state 

variables [16]. For the purpose of this research we will use a machine learning approach 

to solving the system identification problem. We do this because stock price changes do 

not fluctuate according to a known linear model. However, since our purpose is to 

identify a system that we can control – not merely predict – we will continue to use the 

term system identification. However, our method for obtaining the desired system will be 

through machine learning.  
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Chapter 4 

Data & Econometric Feature Selection 

4.1. Data Source 

The data set that we work with to determine equity market vulnerability is approximately 

16 terabytes of NASDAQ Level-2 ITCH data spanning more than a year starting in early 

2014. This data contains all stock orders placed on all tickers on NASDAQ at every 

microsecond. The data records the type of order (buy, sell, cancel, etc.), the quantity of 

shares, and the time stamp of the order. Using this data we reconstruct the order book for 

any given stock ticker at any given time. Table 1 shows what the data set looks like.  

 

TABLE 1. NASDAQ Order Data 2014 

 

Type Seconds Order Number Side Shares Price ($) Shares Left 

A 14510.5014246 99691 B 1 1000 1 

F 34214.5461243 10398669 S 18 554.35 18 

D 34222.2947349 31938698 S 263 554.9 0 

D 21399.422182 343764 B 100 551.85 0 
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A 31201.120316 17189918 B 35 553.54 35 

D 34201.1848943 31249690 S 152 555.44 0 

… … … … … … … 

 

For the purposes of this project we use a subset of this data for 10 tech companies 

of interest including Google, Amazon, Microsoft, Apple, Facebook, LinkedIn, Twitter, 

Intel, HP, and Baidu. We then select 10 random days to observe these stock tickers. Since 

there are 10 stocks on 10 days we have a total of 100 trading days to work with, which 

comes out to approximately 1.6GB. Each day of trading has on average 500,000 orders 

per day per stock, which amounts to 5 million orders per day for the ten companies we 

chose to work with. Several of these companies are considered to be competitors to one 

another (for example HP and Intel) and were therefore useful for competitor stock price 

analysis and predicting. If we then aggregate the total order placements and account for 

order execution, then we can use the discrete orders seen in Table 1 to create the 

histogram shown in Figure 1.   

Not only can we create the histogram pictured in Figure 1, but also we can make 

similar histograms for machine learning purposes. These histograms will also have price 

as the x-axis, but instead they will have unique orders, total age and other measures as the 

y-axes. We can also create even more histograms for intra-day market order executions 

for the given day, since market orders execute immediately, and would otherwise be lost 

data on a limit order distribution histogram. We then represent each of these respective 
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histograms as a physical object or as a statistical distribution. These distribution 

histograms will be used for the feature selection process that will be outlined in the 

coming section. 

 

4.2. Feature Selection 

Representing each of these histograms as a material object, we calculate distribution 

features for machine learning training purposes. Some of the distribution features include: 

• Quintiles 

• Median 

• Center Of Mass 

• Maximum Value 

• Mode 

We also calculate distribution features such as “percentage-of-buy-orders-within-10%-of-

highest-buy-price,” since economic theory of price and demand suggests that order mass 

is repulsive. This means that an exploding number of sell limit orders will likely result in 

a price drop and vice-versa. We also calculate a number of non-distribution features 

including the bid-ask spared length along with the hour of day, in case there is a 

correlation between times of day and certain price movements. 

The distribution metrics are calculated individually for each order histogram type 

(buy, sell or other) and then collectively. They are also computed for the list of 
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competitor stocks, because economic substitution laws suggest that Microsoft prices 

might increase when Apple is on a decline [11]. Competitor prices could also be relevant 

in the case that the market (or specific industry) is broadly moving up or down. For 

example, if the precious metals industry as a whole is declining, then it is likely that 

Royal Gold Inc. (RGLD) will follow the same trends and decline as well. That means that 

the total feature space comes out to: 

F = t * f * w+ n 

Where t is the number of orders types, f is the number of distribution features, w is 

the number of weights, and n is the number of non-distribution features. We can then 

augment this feature space further by incrementing backwards in time for the given 

order-book time instance, and record T order book snapshots. This allows us to calculate 

discrete time derivatives for each distribution feature leading up to the order-book time 

instance. Thus our final feature space comes out to 6,000+ features as given by: 

F = t* f * w * c * T + n 

To further improve the feature set, the features should be normalized and 

standardized. Normalization is commonly understood by those familiar with machine 

learning, however, standardization is used less frequently. To put things simply, 

standardization brings all the features on the same range of possible values. This is useful 

since it is completely arbitrary that Microsoft's stock prices are half the price of Apple 

stock prices, even though Microsoft is a bigger and more profitable company. Stock 

prices, and therefore many of the distribution features, depend on how many shares a 
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company decides to issue. Microsoft has simply decided to issue more shares of its stocks 

and thus its price is also lower.  

To account for extreme outliers on the buy or sell side, the histograms can be 

truncated by moving the outermost 2% of orders inward, thus eliminating outlier effects. 

Here is an example of some of the features that our final feature space included: 

• sellMeanWeightedWithShares 

• buyMedianWeightedWithCounts 

• cancelsKurtosisWeightedWithShares 

• buyAgesQuintile50 

• buyAgesTruncatedQuintile98 

• buyMedianWeightedWithCounts 

• allAgesTruncatedQuintile2 

• … 

Lastly, we label each of these training instances, each of which contains all the 

mentioned features. To make things simple, rather than predicting stock prices on a 

continuous scale we discretized the output by classifying each instance as either having 

gone up, down or stayed roughly the same t seconds in the future. For the test in this 

project we used t = 5.00. That way performance is easier to measure. 
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Chapter 5 

Algorithms Used 

5.1. Baseline Algorithm – The Naiive Trader 

We benchmark performance against two naïve algorithms. The first makes random 

guesses of future output and the other algorithm exclusively predicts the majority output 

of training data. The Majority Vote algorithm is our primary performance benchmark. If 

we are in fact predicting or manipulating stock prices in a way that gives a market 

advantage, then we want to measure our performance against the common stock trader. A 

casual stock trader, who does not leverage algorithmic trading or in depth market 

research, will purchase a stock and assume that overall the market value will increase 

over time. Therefore, he or she buys and holds. The trader will not sell or short sell 

because, he or she knows that there will be ups and downs, but overall the assumption is 

that he or she will ride out the ‘downs’ of the market and hopefully end up with an 

eventual gain. A stock trading control mechanism that exclusively predicts ‘up’ and 

purchases accordingly will mimic the behavior of the casual stock trader that buys and 

holds. This baseline algorithm works best as a benchmark for binary output (up or down 

only), and is diluted in accuracy when we tested with three outputs (up, down, or remain 

roughly the same).   
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Further work would evaluate the significance in prediction variance using 

statistical p-tests and hypothesis testing. These results could be plotted on a ROC-curve, 

which is a standard visualization of algorithm accuracy in the field of machine learning. 

However, for the time being, the Majority Vote algorithm will serve as our primary 

performance benchmark. 

 

5.2. Selected Machine Learning Algorithms 

Here are some of the machine learning algorithms we used with a brief description of the 

algorithm:  

Neural Network – A powerful machine-learning algorithm able to detect hidden 

features. We hypothesized that it would do best at predicting stock prices for this 

reason. 

Simple Perceptron – Essentially a single layered neural network for comparison 

purposes. 

Grandient Boosting – An algorithm that produces a prediction based on a set of 

weaker prediction models. 

Random Forest – Similar to Gradient Boosting, but used exclusively with 

randomly generated decision trees. 

Naiive Bayes – Leverages probability theory to make classification predictions. 
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K Nearest Neighbors – A form of lazy learning that finds K similar instances and 

takes the majority vote of these "neighbors". 
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Chapter 6 

Results 

6.1. Initial Attempts Predicting Google 

We first tested on one single day of Google on April 4th, 2015 with no competitor stocks 

or time shift derivatives. The results can be seen in Table 2. 

 

TABLE 2. Initial Results – Predicting Google Stock (GOOG) with 1,000 instances, 226 

features. Actual output: 34% 'up', 66% 'down'. 

 

Algorithm Accuracy Confidence 

Gradient Boosting 71.5% 71.0 - 71.0% 

Random Forest 70.1% 69.0 - 70.0% 

Naive Bayes 67.8% 67.0 - 67.0% 

K-Nearest Neighbors 67.5% 67.0 - 67.0% 

Naive Prediction 66.0% 65.0 - 66.0% 

 

These initial tests included 256 distribution features that were not normalized. The 

majority vote algorithm predicted with 66% accuracy while all four of the four smart 
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algorithms predicted slightly better, and gradient boosting predicted 5.5 percentage points 

better than the majority vote algorithm, which is a ~8% accuracy boost. These results 

looked promising, however as we repeated these test we found that we must have gotten 

lucky. The pattern did not hold, and often the majority vote algorithm performed best. 

We continued to attempt predicting Google stock data with data normalization, 

standardization, truncation, discrete time derivatives and accounting for companies 

classified as competitors by Morningstar Investment Research, such as Microsoft. 

However, even with these improvements the accuracy did not appear significantly better 

than a common stock trader, as represented by the baseline algorithm. In fact, whenever 

the majority vote was in the 70%+ range the baseline algorithm almost always won. See 

Table 3 for example: 

 

TABLE 3. Predicting Google Stock (GOOG) with 12892 instances, 1224 features. 

Actual output: 73.8% 'up', 26.2% 'down'. 

 

Algorithm Accuracy Confidence 

Majority Vote 73.8% 73.0 - 74.0% 

NN (TensorFlow) 73.8% 73.0 - 74.0% 

K-Nearest Neighbors 69.4% 68.0 - 70.0% 

Random Forest 69.4% 68.0 - 70.0% 

Gradient Boosting 67.8% 67.0 - 68.0% 
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Naiive Bayes 58.4% 57.0 - 58.0% 

Random Guess 49.9% 49.0 - 50.0% 

 

6.2. Facebook Prediction 

In attempts to improve accuracy, we added a few more machine learning models to the 

mix and shifted attention to a new stock, Facebook, and immediately found that the 

prediction margins were much better, as demonstrated in Table 4.  

 

TABLE 4. Initial Results - Predicting Facebook Stock (FB) with 12892 instances, 1224 

features. Actual output: 37% 'up', 38% 'down', 25% 'same'. 

 

Algorithm Accuracy Confidence 

Random Forest 65.6% 65.6 - 66.0% 

K-Nearest Neighbors 51.4% 50.0 - 52.0% 

Neural Network 46.9% 46.0 - 47.0% 

Perceptron 46.7% 46.0 - 47.0% 

Naiive Bayes 45.5% 44.0 - 46.0% 

Majority Vote 37.9% 37.0 - 38.0% 

Random Guess 34.4% 33.0 - 35.0% 
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With these final improvements that we made, we saw Random Forest storm ahead 

the rest of the pack in terms of accuracy with 65% accuracy while distinguishing between 

‘up’ ‘down’ and the newly added ‘same’ output classes. As stated earlier we were 

expecting the neural network to perform the best, but it was 20 percentage points below 

the accuracy of Random Forrest. 

We then tested Facebook again, but added a competing social media company, 

LinkedIn, to the feature space. The results are seen in Table 5. 

 

TABLE 5. Predicting Facebook Stock (FB), referencing LinkedIn (LNKD) in feature 

space. Uses 12892 instances, 2448 features. Actual output: 20% 'up', 58% 'down', 22% 

'same'. 

 

Algorithm Accuracy Confidence 

Random Forest 67.0 % 65.0 - 69.0 % 

K-Nearest Neighbors 59.2 % 57.0 - 61.0 % 

Neural Network 58.7 % 56.0 - 61.0 % 

Perceptron 58.4 % 56.0 - 61.0 % 

Naiive Bayes 31.2 % 28.0 - 33.0 % 

Majority Vote 58.8 % 56.0 - 61.0 % 

Random Guess 42.6 % 40.0 - 45.0 % 
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Adding LinkedIn features appeared to boost accuracy even more for Random 

Forest, which continued to perform best, and all machine-learning models performed 

much better than the baseline algorithm. Future work will assess the significance of these 

marginal differences using p-tests and other statistical methods. While we were surprised 

that the neural network did not perform best, a plot of the neural network training and test 

set accuracy plotted over epochs revealed something very promising regarding stock 

price prediction. This plot can be seen in Figure 2. 

 

FIGURE 2. Training and Test Set Accuracy for the Neural Network over each Epoch. 



   

 24 

From the image above, there is a visible upward blip near the 80th epoch of the 

validation set and the training set continues to decrease in error. This indicates that some 

over-fit is taking place, and while the accuracy of the neural network was 10 percentage 

points below Random Forrest, there is a slight but distinct downward slope in the 

validation set accuracy. This indicates that the model is in fact learning from the training 

data and becoming better at predicting the stock price movement of novel data. This is 

strong evidence, that at least for Facebook stock prices are predictable with a wide error 

margin. To further determine whether or not this applies to other or all stocks at other 

times, we will need to continue to test a broader set of stocks across a wider time span. 

We can however conclude from these results that at least for some stocks order book 

distributions are very broadly predictive of future stock price movement. 
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Chapter 7 

Conclusions 

 

Predicting future stock prices for companies with low trade volume relative to companies 

like Microsoft and Google, was much more successful. In our tests we were predicting 

the stock price at a fixed five seconds into the future. We hypothesize that the reason that 

highly traded stocks were more difficult is that at such a high trading speed, future price 

predictability decays proportionally faster. After only two seconds of active trading hours 

on Google, so many market orders have executed that the most important features (likely 

the features surrounding the spread region) have already mutated to become 

indistinguishable from that of two seconds prior.  

Based on these observed predictability dynamics, we hypothesize that for each 

stock there is a window of prediction opportunity that decays. Perhaps the rate of decay is 

quicker for stocks that are highly traded. This may explain why we were able to predict 

Facebook well, because with a five second prediction into the future we happened to be 
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striking within this hypothetical window of prediction opportunity. It could be that the 

prediction window for Google is two seconds or one second since it is as if higher trading 

volume makes time go faster. This hypothesis however, would need to be further tested to 

be verified.  

 

7.1. Further Work 

Price Impact Model Improvements 

Future improvements will involve feature space improvement, machine learning model 

improvement and further testing. To improve the feature space, we could add more 

distribution features pertaining to the histogram such as skewness and other metrics. The 

feature space could also be scaled by running a PCA algorithm to reduce the feature 

space. There are also many other machine learning algorithms that could be tested and it 

would also be worth investigating why the neural networks did not perform well in this 

study. Optimal parameters for these machine-learning algorithms could be identified 

using a parameter grid search or other type of parameter exploration wrapper.  

Also, to truly determine consistent stock price predictability, we would need to test 

these prediction algorithms on a much larger data set. This may involve computing a 

GPU on a super computer and accessing many more of the stock tickers across a much 

larger time range. 
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Next Steps to Determine Stock Price Manipulation Threat  

The primary object of this class project was to do the first part of this research, the system 

identification. Later the system identified in this research will be used to design and test a 

controller that simulates trades to greedily optimize trading return on investment (ROI) 

based on future stock price predictions. The controller will be tested on the BYU IDeA 

Labs’ Tour De Finance equity trading simulation system, an open source project that 

dynamically measures high frequency trading algorithm performance for research 

purposes. If the trading controller simulation results in a statistically significant positive 

delta in equity trading ROI, then we have shown that order book behavior is predictive of 

future price movement. In the case that the controller obtains a statistically significant 

positive delta in trading ROI, then this suggests that the order book shape is in fact 

predictive of future stock prices. If this is the case, then those features could be 

manipulated by placing unexecuted limit orders to control stock prices. In the case that 

trading ROI is not statistically significant, then this suggests that the features that we 

have learned are not significantly predictive of future prices. This may mean that stock 

prices cannot easily be controlled by manipulating the order book, and that the threat to 

this type of economic terrorist attacks is low. 

AndrewMartin
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