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Abstract
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Bachelor of Science

by Winston Hurst

This thesis presents a gradient play differential game in a producer market with

linear demand as a model of behavior in a competitive environment. This model

is then extended to allow for cooperation. Definitions of coalitions and natural

coalitions are provided, and previous work dealing with static coalition structure

is presented. Requirements for acceptable system dynamics are given, and a spe-

cific set of dynamics presented. These dynamics are shown to meet the specified

requirements in a number of cases through proofs of stability of equilibria as well

as guarantees that the dynamics result in natural coalitions. Numerical examples

are provided to support the claim that a reasonable equilibrium exists and that its

basin of attraction covers reasonable initial conditions. The work concludes with

a summary as well as possible paths for continued research.
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Chapter 1

Introduction

Cooperation in competitive environments appears in a variety of fields, from busi-

ness to biology. Traditionally, questions relating to the cooperation of rational

agents in these environments belong to the purview of cooperative game theory.

In that context, the system is as a coalitional game with transferable payoffs, and a

characteristic function determines the total utility produced by that coalition. The

Shapley value indicates the value each participant contributes to the cooperative

group (coalition) and dictates distribution [1].

However, this representation fails to capture the effects of one coalition’s choices on

the payoffs of other coalitions [2]. The characteristic function of cooperative games

maps any subset of the agents to some payoff for that coalition but ignores the

coalitional structure of the other firms not included in the coalition in question.

Though variations which attempt to take this external structure into account

exist, a systems and control approach to this problem offers distinct advantages

for representing and reasoning about cooperation in competitive environments.

Certain representations of agents’ behaviors in markets, especially gradient play

differential games, lend themselves to control and systems analysis. By modeling

firms’ decision strategies with differential equations and using a vector of the firms’
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current strategies as a state vector, the game can be represented as a mathematical

system. This allows for the use of analytical methods to investigate properties of

the system, such as stability. Although much of the vocabulary in this work will be

taken from economics and game theory literature, the market dynamics abstract to

other types of systems. Ultimately, the problem here is algorithmic, not economic.

Some work has already be done in this area (see [3], [4] and [5]). However, these

have all considered cases in which cooperative structure is defined a priori, which

can lead to situations in which cooperation is in fact not beneficial for all involved.

This work presents a set of dynamics which allows cooperative structure to change

over time and guarantees that all participants are better off at equilibrium. De-

signing dynamics which act this way yields two important benefits. First, they can

be used to model systems where cooperation already occurs, such as team dynam-

ics in sports, firm formation in industrial organization or agent coordination for

autonomous systems. Second, these principles can be used to induce cooperation

in situations where cooperation would be beneficial but does not occur naturally,

such as distributed computation.

1.1 Market Model

A gradient play differential game can represent the behavior of rational agents

in competitive environment. The game consist of of a set N of n firms who

participate in a Bertrand producer market. The market includes a price vector

p ∈ Rn, a demand function q(p) : Rn 7→ Rn and profit function π(p) : Rn 7→ Rn.

The price, demand and profits associated with a specific firm i ∈ N are denoted

with a subscript: pi ∈ R, qi(p) : Rn 7→ R and πi(p) : Rn 7→ R. Each firm sells an

ordinary, differentiable good at a price pi which the firm determines. Cross-price

demand may exist in the market, meaning that the demand for each good is a

function of all prices. All firms are assumed to produce at zero cost, so profits are
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given by the product of price and demand.

πi = piqi(p) (1.1)

While individual profits tell us how each firm fares, the sum of all profits measures

producer performance as a whole.

Definition 1.1. The sum over all profits in the market is called Producer Surplus,

w:

w(p) =
∑
i∈N

πi(p). (1.2)

Definition 1.2. The Maximum Producer Surplus or Cartel Outcome w∗ is the

maximum producer surplus the market can achieve over all possible price combi-

nations when such a maximum exists, otherwise the maximum producer surplus

is understood to be infinity:

w∗ = max
p
w(p). (1.3)

Definition 1.3. An Optimal Pricing Policy p∗ is a set of prices which result in

the market producing maximum producer surplus:

p∗ = argmax
p

w(p). (1.4)

Note that depending on the demand function, a market may have multiple optimal

pricing policies, all of which produce the same producer surplus.

1.1.1 Demand Function

This work considers linear demand functions, which have the form

q(p) = Ap+ b, A ∈ Rn×n, b ∈ Rn. (1.5)
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Note that entry aij represents the sensitivity of demand for good i with respect to

changes in price of good j. This sensitivity of demand will be positive for substitute

goods and negative for complementary goods, and the relationship between goods

as complements or substitutes is symmetric. Because the goods sold are assumed

to be normal, an increase in a good’s price always decreases the demand for that

good, so diagonal entries must be negative. Additionally, a firm’s own price affects

its demand more than the combined influence of all other goods, and affects its

own demand more than it affects all other goods’ demands combined. These

restrictions give rise to the following definition:

Definition 1.4. A linear demand function q(p) = Ap+ b is said to be admissible

if the following conditions are met:

1. A and AT are diagonally dominant.

2. A is sign symmetric.

3. ∀i ∈ N , aii < 0.

4. ∀i ∈ N , bi > 0.

The following definition relating to the properties of demand functions will also

be useful throughout this work:

Definition 1.5. A linear demand function q(p) = Ap+ b is said to have non-zero

cross-price elasticity of demand if A is not diagonal.

The requirement of diagonal dominance on both A and AT ensures that A and

(A+AT ) are invertible. This in turn ensures the existence of exactly one optimal

pricing policy, which can be found analytically. For p ∈ Rn, let diag(p) = D ∈

Rn×n denote a diagonal matrix where dii = pi. Let 1 indicate an appropriately

sized vector of 1’s. Producer surplus may be written as

w = 1T Π(p) = 1Tdiag(p)q(p) = pT (Ap+ b). (1.6)
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The maximum is found by taking the derivative with respect to p and setting that

expression equal to 0:
∂w

∂p
= (A+ AT )p+ b = 0. (1.7)

Because (A+AT ) is invertible, there is exactly one optimal pricing policy given by

p∗ = (A + AT )−1b, and an individual firm’s price expressed in terms of the prices

of the other firms is

p∗i =

∑
j∈N/i(aij + aji)p

∗
j + bi

−2aii
. (1.8)

Therefore, any market characterized by an admissible linear demand function has

exactly one optimal pricing policy, and any other pricing policy leaves unrealized

profits in the system from the point of view of the producers. Analysis of consumer

surplus is ignored.

1.1.2 Dynamics

In gradient play differential games, each firm’s strategy is defined by the gradient

of its payoff function [6]. In the current context, a firm’s strategy is the price

set for the corresponding good, and its strategy set is restricted to positive real

numbers. The following differential equation represents a firm’s pricing decisions:

ṗi =
∂Ui
∂pi

. (1.9)

where Ui ∈ R is a firm’s utility, an abstract measure of personal benefit. Here

and throughout the rest of this work, ‘ · ’ indicates a time derivative of a variable.

Two fundamental definitions of individual firms’ utility, one based on each firm’s

own profits and the other based on producer surplus, and resulting dynamics are

presented to illustrate the problem this work seeks to address.
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1.1.2.1 No Cooperation

In the absence of cooperation, each firm seeks to maximize its own profit with no

regard whatsoever to the other firms’ profits. Letting Ui = πi and applying (1.9)

results in

ṗi =
∂πi
∂pi

= qi(p) + pi
∂qi
∂pi

. (1.10)

Dynamics for the entire system are then:

ṗ = (A+ Â)p+ b. (1.11)

where âii = aii and âij = 0. The stability of the system described by (1.11) is

deduced by noting that (A + Â) is diagonally dominant and the diagonal entries

are negative, which implies the real parts of the eigenvalues of the matrix are also

negative. Also, since (A + Â) is invertible, there exists a unique equilibrium for

the system. At this non-cooperative equilibrium (NCE), each firm’s price is

pncei =

∑
j∈N/i aijp

nce
j + bi

−2aii
. (1.12)

We now compare the optimal pricing strategy with the prices in market at non-

cooperative equilibrium. For an admissible linear demand function with non-zero

cross-price elasticity of demand, pncei 6= p∗, which implies that wnce < w∗. However,

if there cross-price elasticity is zero, then the pncei = p∗ and wnce = w∗. This

essentially means that there is no benefit to cooperation if there is zero cross-

price elasticity of demand, and therefore, in subsequent analysis we will generally

consider markets where it is non-zero.
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1.1.2.2 Perfect Cooperation

In the perfectly cooperative case, all producers collude perfectly to achieve maxi-

mum producer surplus, so that

Ui = w =
∑
i∈N

πi (1.13)

which results in the following dynamics:

ṗi =
∂w

∂pi
=

n∑
j=1

∂πj
∂pi

ṗ = (A+ AT )p.

(1.14)

Similar to the non-cooperative case, the existence of a single stable equilibrium

given an admissible demand function becomes apparent upon recognition that

(A+ AT ) is also diagonally dominant and the diagonal entries are negative. This

equilibrium will be referred to as the perfectly cooperative equilibrium or PCE.

Note that these dynamics mirror (1.7), and at the PCE, ppce = p∗. Importantly,

this implies that producer surplus at the PCE is always at least as great as it is at

the NCE. This indicates that cooperation allows the market to realize an elevated

amount of producer surplus compared to that obtainable without cooperation.

However, although perfectly cooperative dynamics result in maximum producer

surplus, there is no guarantee that all firms are better off individually.

For example, consider the two-firm market characterized by the following admis-

sible demand function:

q(p) =

−3 −2

−1 −3

 p+

6

6

 (1.15)

The prices, profits and producer surplus of the system under non-cooperative and

perfectly cooperative equilibrium are shown in the table below.
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Dynamics p1($) p2($) π1($) π2($) w($)

Non-Cooperative 0.71 0.88 1.49 2.34 3.83

Perfectly Cooperative 0.67 0.67 1.78 2.22 4.00

Table 1.1: Prices, profits and producer surplus in the market given in (1.15)
at equilibrium under different dynamics.

Notice that although producer surplus is higher with perfectly cooperative equilib-

rium, the second firm is actually worse off than it would be under non-cooperative

dynamics. In cases such as that given above, we can assume that the firm either

does value the total producer surplus for some unspecified reason or that there

exists some hidden redistribution mechanism which allocates producer surplus in

such a way that everyone is better off. Because this work investigates coopera-

tion in competitive environments, we wish to consider the case where firms are

motivated strictly by the money they receive, which precludes wholly altruistic

behavior. This work considers side payments between firms as a means of redis-

tributing profits in such a way that firms are incentivized to cooperate without

altruistic motivation.

1.2 Coalitions and Side Payments

Coalitions and side payments provide a framework for explicitly representing co-

operation and redistribution. A coalition is a set of firms whose utility takes into

account the profits of other firms in the coalition. More formally,

Definition 1.6. A coalition C is a set of firms such that

∀i ∈ C,Ui =
∑
j∈C

βijπj

0 ≤ βij ≤ 1, βij = 0 =⇒ βji 6= 0

(1.16)
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This general definition allows us to consider perfectly cooperative dynamics as the

behavior of the system when everyone participates in a single, all encompassing

coalition (referred to as the grand coalition) and the cooperation coefficients β are

all equal to 1. However, this general definition also allows purely altruistically mo-

tivated cooperation. Two definitions are useful to specify the type of cooperation

that is of interest here.

Definition 1.7. A firm’s revenue vi is the total amount of money a firm has after

paying and receiving side payments.

Definition 1.8. A natural coalition CN is a set of firms such that

∀i ∈ CN , πncei ≤ vi = πi +
∑
j∈C\i

βijπj −
∑
j∈C\i

βjiπi,

∑
j∈C

βji = 1, 0 ≤ βij ≤ 1, βij = 0 =⇒ βji 6= 0.
(1.17)

where πncei are firm i’s profits at the NCE. The side payment from firm j to firm i

is the value βijπj. Side payments cause firms’ personal interests to align, partially

at least, with the interests of other firms as well for selfish rather than altruistic

reasons. Thus acting selfishly, they may also benefit the other members of the

coalition. This can lead to situations where all members of the coalition are better

off than they would be acting independently.

1.3 Conclusion

The goal of this work is to define an algorithm representing rules for side payments

between firm in the market which produces natural coalitions. These rules will be

represented as differential equations and included as part of the system dynamics

for the market. Notions of equilibrium and stability will be used to prove that the

algorithm converges to correct values for prices and side payments, and a rigorous

definition of ‘correct’ will be provided in Chapter 3.
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The following chapters expand on dynamic system representations of cooperation

in competitive environments. Chapter 2 reviews full and partial participation in

fixed coalitions, providing conditions for stability and exposing the need for a rep-

resentation of dynamic coalition formation. Chapter 3 presents dynamic coalition

formation. It enumerates criteria for admissible side payment dynamics and pro-

poses a set of dynamics which meet these criteria. Numerical examples are given

to compare these dynamics to both non-cooperative and perfectly cooperative dy-

namics. Chapter 4 concludes the work by summarizing key points and presenting

paths for further research.



Chapter 2

Fixed Coalition Structures

The Information and Decision Algorithms Laboratories at BYU has built up in-

teresting results regarding the stability [4], [3] and value of cooperation [5] with

coalition structure given a priori. In [4], it is shown that given certain properties

of the demand function, proving the stability of the Grand Coalition, G = N

(when all firms participate in the same coalition together), suffices to show that

all possible coalition structures have a single, stable equilibrium. In [3], these re-

sults are extended to coalition structures in which firms may partially participate.

This chapter reviews this work in light of our goal to dynamically create natural

coalitions.

2.1 Fixed Full Cooperation

Fixed full cooperation refers to the situation in which, before the game begins, each

firm is assigned to participate in exactly one coalition. Consistent with the market

model given earlier, profits are equal to the product of price and demand. However,

the explicit inclusion of coalitions in the model requires a slight augmentation. For

11
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a coalition F , the objective function is

UF =
∑
i∈F

πi(p) (2.1)

Each firm seeks to to maximize the total profits of its corresponding coalition. For

a firm i ∈ F , this results in the following price dynamics:

ṗi =
∂UF
∂pi

=
∂
(∑

j∈F πj
)

∂pi
=
∑
j∈F

∂πj
∂pi

. (2.2)

Dynamics for the entire system become

ṗ = [DF (JTq p))]p+ q(p) (2.3)

where Jq is the Jacobian of the demand function q(p) and DF (JTq p)) is defined as:

dij = aij if i and j are in the same coalition, and dij = 0 otherwise. Fixed full

cooperation can be thought of as a generalization of perfect cooperation. Each

firm’s goal is to maximize the profits of the coalition to which it belongs, and

when the grand coalition defines the cooperative structure of the market, the

system becomes identical to that described by the perfectly cooperative dynamics.

The central theorem of [4] addresses the question of which cooperative structures

will result in a stable equilibrium. Let σ(A) denote the spectrum of A.

Theorem 2.1. Consider a market with a set of firms N and the objective function

for the Grand Coalition G in (2.1). The system described in (2.3) has a unique

stable equilibrium for all F ∈ ∆, where ∆ is the set of all possible partitions of

N , if for some positive real number ε,

max σ(H(p)) ≤ −ε, ∀p ∈ Rn

where H(p) is the Hessian matrix of the objective function UG.
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Note for an admissible linear demand curve q(p) = Ax+p, H(p) = (A+AT ), which

satisfies the condition stated in Theorem 2.1. Therefore, all coalition structures

result in a unique, stable equilibrium for any market characterized by an admissible

linear demand curve.

Explicit distribution of a firm’s revenues among participating firms is ignored,

and there is no guarantee that the given cooperative structure results in natural

coalitions. The failure to represent side payments is remedied to a certain extent

in representations of partial cooperation.

2.2 Fixed Partial Cooperation

To represent the possibility of a firm participating in one or more coalitions to

different degrees (partial cooperation), the two matrices, Φ and D are introduced.

For a market with a firm setN = {1, · · · , n}, Φ is a participation matrix, where 0 ≤

Φij ≤ 1 indicates the degree to which firm i participates with firm j. Participation

is assumed to be symmetrical, so that Φij = Φji, and each firm cooperates fully

with itself, Φii = 1. The distribution matrix D is a diagonal, positive definite

matrix. Note that the product D̂ = DΦ must be a stochastic matrix in order

to preserve profits in the system. Entry d̂ij represents the percentage of firm j’s

profit firm i receives, and x̂ijπi represents the side payment from firm j to firm i.

Let A◦B denote the Hadamard product or pointwise multiplication of two matrices

of the same size. The resulting utility function and price dynamics for the system

are

U = DΦΠ

ṗ =
∂U

∂p
= D((Φ ◦ JTq (p))p+ q(p)).

(2.4)
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A central theorem in [3] describes sufficient conditions which guarantee the exis-

tence of a unique, stable equilibrium for the system.

Theorem 2.2. For the game described in (2.4) with firm set N and any posi-

tive definite, diagonal D, the system will have a unique, stable equilibrium for all

positive semi definite Φ if there exists a positive real number ε such that

max σ(RG(p)) ≤ −ε, ∀x ∈ Rn,

where RG(p) is the Jacobian of the system dynamics corresponding to the Φ asso-

ciated with the Grand Coalition.

This result closely mirrors that found for full cooperation, and in fact fixed partial

cooperative dynamics can also model full cooperation by restricting the values in

Φ so that Φij = 1 if i and j are in the same coalition and Φij = 0 otherwise. The

D matrix could be any diagonal, positive definite matrix, though should we desire

D̂ to represent actual side payments rather than a general notion of utility derived

from another firm’s profits, D is restricted so that the product D̂ is a stochastic

matrix.

2.3 Distribution

This brings up an important point. For some values of Φ, there exist multiple

positive definite D matrices which satisfy the condition that the product DΦ be a

stochastic matrix. Furthermore, different values for D lead to different individual

revenues. For example, consider a market described by the demand function

q(p) =

−4 2

1 −3

 p+

8

9

 (2.5)
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and a participation matrix

Φ =

1 1

1 1

 . (2.6)

Both the following matrices are valid D matrices.

D1 =

0.5 0

0 0.5

 , D2 =

0.58 0

0 0.42

 (2.7)

Firms’ profits and producer surplus at equilibrium for the different D matrices as

well as for the non-cooperative equilibrium are shown in the table below.

Cooperative Structure p1($) p2($) π1($) π2($) w($)

Non-Cooperative 1.38 1.28 39.84 28.01 67.85

D1 1.64 1.48 34.715 34.715 69.43

D2 1.64 1.48 40.27 29.16 69.43

Table 2.1: Prices, profits and producer surplus in the market given in (2.5)
and (2.6) at equilibrium under different for different cooperative structures.

With distribution dictated by D1, the first firm is worse off than it would be acting

independently, while under D2 the first firm is better off. However, given D1,

there is no way for the first firm to defect and act independently or perhaps even

negotiate for a more favorable distribution such as in D2. Although representation

of cooperation with fixed partial participation in coalitions does explicitly lay out

side payments, there is no guarantee that the a priori structure produces natural

coalitions.
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2.4 Conclusion

Market models with fixed cooperative structures have been well studied, and con-

ditions which lead to a single, stable equilibrium are well defined. The system

with only full cooperation in coalitions equates individual firms’ utilities to the

total profits of the coalition, ignoring how redistribution may occur if it occurs

at all. Partial cooperation can represent side payments explicitly, but predefined

coalition structures have no guarantee that the coalitions will be natural at equi-

librium. This highlights the necessity of dynamic coalition formation which will

guarantee natural coalitions.



Chapter 3

Dynamic Coalition Formation

Previous representations have examined cooperation in systems with fixed coali-

tion structures. We now turn to consider the problem of modeling cooperation

when the topology of cooperation changes over time. As explained in earlier chap-

ters, fixed coalition structures may result in unnatural coalitions, meaning that

a firm’s participation in a cooperative coalition actually make it worse off than

acting independently would have. These firms stay in coalitions not because it

is beneficial but because they are compelled to by the constraints of the game.

The rules designed here to govern dynamic coalition formation aim to ensure that

cooperation is never coerced and exists only to the extent that it is selfishly ben-

eficial.

This chapter presents specific rules for pricing and side payments in a two firm

market which fulfill two specific criteria. First, all decisions are selfish, that is, the

rules reflect the firms’ desire to maximize their own revenues. Second, both firms

must be at least as well off as they would be not cooperating. This is analogous

with saying that any collusion must result in a natural coalition. Ideally, these

dynamics would result in an optimal pricing strategy, though the goal here is to

maximize individual revenues, not producer surplus.

17
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3.1 An Updated Model

Models of static coalition structures employed matrices indicating agents’ partic-

ipation and degree of participation in the different coalitions, and side payments

were represented as a percent of total profits given to another firm. For dynamic

coalition formation, we decompose the price variables into two new variables to

facilitate reasoning about effects of cooperation relative to no cooperation. Let

price now be given by pi = p̄i+ p̂i. The first set of new price variables, p̄, represent

the price that the firm would set if it acted completely independently while the

second, p̂ represent a deviation from the non-cooperative price due to cooperation.

The expression for an individual’s profits under the new basis becomes

πi = piqi(p) = (p̄i + p̂i)(Aii(p̄i + p̂i) + Aij(p̄j + p̂j) + bi)

= (p̄i + p̂i)(Aii(p̄i + p̂i) + Aij p̄j + bi) + (p̄i + p̂i)Aij p̂j.
(3.1)

The above decomposition shows that the deviation of firm j from its non-cooperative

strategy p̂j, results in a change in demand for the good produced by firm i equal to

Aij p̂j. This in turn changes profits by an amount equal to piAij p̂j. A side payment

from a firm i to a firm j is represented as a percentage β of firm i’s profits which

occur because of the cooperative shift p̂j of firm j:

βipiAij p̂j, 0 ≤ β ≤ 1. (3.2)

Under this formulation, a firm’s total revenue becomes the sum of profits, side

payments given, and side payments received, and utility is strictly equal to revenue:

Ui = vi = πi − βiAijpip̂j + βjAjipj p̂i. (3.3)

We now describe a formulation for price dynamics which allows us to reason about

the system with respect to NCE. Note that, holding p̄i constant, ∂p̂i
∂pi

= 1. As before,
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we take the partial derivative of utility with respect to price:

ṗi =
∂Ui
∂pi

= 2Aiipi + Aijpj + bi − βiAij p̂j + βjAjipj

= 2Aiip̄i + Aij p̄j + bi + 2Aiip̂i + Aij p̂j − βiAij p̂j + βjAjipj.

(3.4)

Let

˙̄pi = 2Aiip̄i + Aij p̄j + bi. (3.5)

Since pi = p̄i + p̂i, ṗi = ˙̄pi + ˙̂pi, and

˙̂pi = 2Aiip̂i + Aij p̂j − βiAij p̂j + βjAjipj

= 2Aiip̂i + (1− βi)Aij p̂j + βjAjipj.
(3.6)

The definition of ˙̄pi in (3.5) parallels the definition of non-cooperative price dy-

namics given in (1.11). Because the p̄ variables are completely decoupled from the

other variables in the system, p̄i in this cooperative system behaves exactly as pi

does in the non-cooperative system. Discussion in Chapter 1 shows that, given an

admissible linear demand function, there is a single, stable set of prices to which

the system converges, the NCE. Since here, in the cooperative system, p̄i evolves

in the exact same way, it too will always converge to the NCE given an admissible

linear demand function, and at the cooperative equilibrium (CE), p̄ce = pnce.

Also, because ˙̄p is independent of β and p̂ and both β̇ and ˙̂p are dependent on p̄,

we know that β and p̂ will not reach their cooperative equilibrium values until p̄

has reached its equilibrium value of pnce. Therefore we consider p̄ to be a constant

when considering the system at or very near the cooperative equilibrium. This

allows us to focus our analysis on the behavior of p̂i and βi. This assumption also

implies that 2Aiip̄i+Aij p̄j +bi = 0, since at the NCE, the time derivative of p̄i = 0

(Equation (3.5)).

Now we can reason about a firm’s total payoff relative to its profits at the NCE.

As p̂i is conceptually a deviation from the NCE, let π̂i represent gains or losses in
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profits relative to πncei = p̄i(Aiip̄i + Aij p̄j + bi):

πi = p̄i(Aiip̄i + Aij p̄j + bi) + p̄iAij p̂j + p̂i(Aii(2p̄i + p̂i) + Aijpj + bi))

= πncei + p̄iAij p̂j + p̂i(Aii(2p̄i + p̂i) + Aijpj + bi)

π̂i = p̄iAij p̂j + p̂i(2Aiip̄i + Aij p̄j + bi + Aiip̂i + Aij p̂j)

= Aiip̂
2
i + Aijpip̂j

(3.7)

This idea can also be extended to revenue:

v̂i = π̂i − βiAijpip̂j + βjAjipj p̂i. (3.8)

This small change in representation is helpful because it facilitates reasoning about

whether or not a firm is better off cooperating than acting independently. If v̂i is

non-negative, than the firm is at least as well off, and if v̂i is negative, the firm is

worse off.

A necessary condition for a coalition to be natural is that the all participating firms

make at least as much as they would without cooperation, which implies that the

total profits in the system be at least as great as the total profits produced in the

non-cooperative case. The set of price vectors p̂ which satisfy this property can

be identified geometrically. Let ŵ =
∑

i∈N π̂i be the change in total profits in the

system resultant from cooperation. The ellipse described by the expression

ŵ =
∑
i∈N

π̂i = Aiip̂
2
i + Aijpip̂j + Ajj p̂

2
j + Aijpj p̂i = 0 (3.9)

delineates a contour of prices for which the total profits of the system are equal to

the profits of the non-cooperative system. For any point on or inside this ellipse,

the total profits of the system are at least as great as the total profits of the

non-cooperative system.
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For the pricing policies represented by points which lie on this contour, there exists

exactly one redistribution of total profits which makes both firms at least as well

off as they would be without any cooperation. For all pricing policies within the

ellipse, however, there exist multiple distributions which meet this requirement.

We can assume that the distribution function works by giving both firms at least

as much as they would have made without cooperation and then distributing the

surplus ŵ (which is always greater than zero inside the ellipse) between the two.

As there are infinite ways to divide the surplus, there are infinite distribution

policies which satisfy the requirements of a natural coalition.

Perhaps because of the numerous possible ways to distribute cooperative gains,

describing rules for side payments via β dynamics proves less straightforward than

describing price dynamics. Taking the partial derivative of revenues with respect

to βi yields

β̇i =
∂vi
∂βi

= −Aij p̂jpi. (3.10)

This approach to defining dynamics for βi, however, does not capture the feedback

effects of side payments and consequently results in no cooperation. When the

product Aij p̂j is positive, it indicates that firm j has moved its price in a manner

favorable to firm i, producing a windfall of Aijpip̂j for that firm. Note that when

this is the case, the time derivative of βi is negative, indicating that firm i wants

to decrease βi, the percentage of the windfall it gives to firm j. In simulations,

this resulted in all β variables decreasing until capped at 0, which results in no

cooperation and no deviation from the NCE.

The failure of the gradient approach requires the consideration of other sets of

dynamics. These must still be selfishly motivated, that is they must still try to

maximize the individual firm’s profits, but they must also take into account the

feedback effects of side payments. It should be noted that a number of different

rules for side payments result in natural coalitions, each with a slightly different

distribution of profits. Here, we present a specific rule.
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To understand the feedback effects of a choice of βi, consider the equilibrium value

p̂eqj when all other variables are held constant. Note that symmetry in firms allows

for the interchange of subscripts i and j. From ṗj = 0 and (3.6),

p̂eqj =
(1− βj)Ajip̂i + βiAijpi

−2Ajj
. (3.11)

The partial derivative of p̂eqj can be used to approximate the feedback effect of a

choice of side payment coefficient βi:

∂p̂eqj
∂βi

=
Aijpi
−2Aii

. (3.12)

If we then substitute p̂eqj into v̂i for p̂j and take the partial derivative of this new

expression with respect to βi results in the following dynamics:

β̇i = −Aij p̂jpi + (1− βi)
(Aijpi)

2

−2Aii
+ βjAjipj p̂i. (3.13)

However, dropping the last term results in negligible difference in equilibrium

prices, profits and revenues. Because of this and because the simplified beta dy-

namics greatly reduce the complexity of analysis, beta dynamics are finally defined

as follows:

β̇i = −Aij p̂jpi + (1− βi)
(Aijpi)

2

−2Aii
. (3.14)

The desire to maximize a firm’s own profits by reducing the amount given in a

side payment is counteracted by the second term, which can be thought of as a

recognition of the need to incentivize the other firm appropriately so that it shifts

its price favorably. Having established system dynamics we now investigate the

properties of the system at equilibrium.
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3.2 Properties at Equilibrium

One of the chief motivation for designing this system of side payments was to

guarantee that all firms would benefit from cooperation. Here, we show that at

equilibrium, all cooperative coalitions are natural coalitions, or in other words,

∀i ∈ N , v̂cei ≥ 0. Recall from (3.8) that v̂i ≥ 0 implies vi ≥ πncei . We now show

this is true for the dynamics given in (3.6) and (3.14).

Lemma 3.1. If sign(p̂i) 6= sign(Aji), then βj = 1.

Proof. At equilibrium,

βj =
(2Aiip̂i + Ajipj)

(Ajipj)

=
2Aiip̂i
Ajipj

+ 1.

(3.15)

Since Ajj < 0 and sign(Aij) 6= sign(p̂j), all terms are positive, and the raw value

of βj is greater than 1. However, explicit constraints demand that 0 ≤ βj ≤ 1,

which caps βj at 1.

Theorem 3.2. Given an admissible linear demand function, system dynamics

described in (3.6) and (3.14) result in natural coalitions.

Proof. This is proved by showing that ∀i ∈ N , v̂cei ≥ 0. The expression for v̂i is

quadratic in p̂i, and can be rewritten as v̂i = ap̂2j + bp̂j + c.

v̂i = Aiip̂
2
i + ((1− βi)p̂jAij + βjpjAji)p̂i + (1− βi)p̂jAij p̄i. (3.16)

Because Aii is negative, this expression represents a concave parabola (holding

all variables other than p̂i constant), which indicates that the vertex will be a

maximum and will always be greater than or equal to the v̂i-axis intercept (1 −

βi)p̂jAij p̄i. As the dynamics of p̂i given in (3.6) maximize the above expression,
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if the value of the intercept is greater than or equal to 0, then the net effect of

cooperation on firm i is non-negative.

Consider two cases: sign(Aij) = sign(p̂j) and sign(Aij) 6= sign(p̂j). In the first

case, examining the signs of the factors shows that (1 − βi)p̂jAij p̄i ≥ 0. Explicit

limits on p̄i and βi, ensure that p̄i and (1 − βi) are non-negative. Furthermore,

because sign(Aij) = sign(p̂j), the product of these two is also non-negative, and

the entire term must be non-negative at equilibrium.

In the second case, sign(Aij) 6= sign(p̂j), which by lemma (3.1) implies βi will be 1.

As a result, (1−βi)p̂jAij p̄i = 0. Therefore, the dynamics always result in all firms

being at least as well off as they would be under non-cooperative dynamics.

From this, it also clearly follows that the producer surplus of the system is at least

as great as it was at NCE. Natural coalitions are guaranteed. Furthermore, it

can be shown that for any admissible linear demand function which has non-zero

cross-price elasticity, each firm is strictly better off than it was at the NCE.

Lemma 3.3. At equilibrium, if p̂i = 0, then βj = 1.

Proof. This follows directly from substitution into (3.15).

Lemma 3.4. Given a linear demand function and the the dynamics in (3.6) and

(3.14), at equilibrium, (p̂i = p̂j = 0)↔ (Aij = Aji = 0).

Proof. First, we will prove that if at equilibrium p̂i = p̂j = 0, then Aij = Aji = 0.

We proceed by contradiction, assuming that at equilibrium, p̂i = p̂j = 0 and

Aij, Aji 6= 0. From lemma (3.3), βi = βj = 1. Substituting into (3.11),

p̂j = 0 =
p̄iAij
−2Aii

, (3.17)

which could only be true given an admissible linear demand if Aij = 0. This is a

contradiction. Therefore (p̂i = p̂j = 0) =⇒ (Aij = Aji = 0).
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The assertion that if Aij = Aji = 0, then p̂i = p̂j = 0, follows directly by substitu-

tion into (3.11).

This lemma shows that so long as cross-price elasticity of demand in the market is

non-zero, cooperation will occur. We now proceed to show that this cooperation

always results in both firms being strictly better off than they would be at the

NCE.

Theorem 3.5. Given an admissible linear demand function which demonstrates

cross elasticity of demand, the equilibrium produced by the proposed system dy-

namics is such that both firms are better off than they would be at the NCE.

Proof. The expression for v̂i in (3.16) can be rewritten in vertex form

v̂i = Aii

(
p̂i−

((1− βi)Aij p̂j + βjAjipj)

−2aii

)2

+(1−βi)p̂jAij p̄i−
((1− βi)p̂jAij + βjpjAji)

2

4Aii
.

(3.18)

At equilibrium then, v̂i = (1−βi)p̂jAij p̄i− ((1−βi)p̂jAij+βjpjAji)
2

4Aii
, and it can be shown

that this value is always positive. Again, consider two cases: sign(Aij) = sign(p̂j)

and sign(Aij) 6= sign(p̂j). In the first case, all terms are positive, so v̂i > 0. In

the second case, βi = 1, so again v̂i > 0.

In summary, the system demonstrates the desired properties at equilibrium. When

corss-price elasticity of demand in the market is non-zero, cooperation induced

through side payments makes both participants strictly better off.

3.2.1 Stability

This section shows that equilibria of the system are locally stable, meaning that,

given time and the correct initial conditions, firms will settle into natural coalitions.

The dynamics for the system with side payments are non-linear. To facilitate
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analysis, consider the system dynamics obtained by linearizing the system about

an equilibrium point q = (pcei , p
ce
j , β

ce
i , β

ce
j ). The superscript ce indicates the system

is at the cooperative equilibrium. Perturbations around the equilibrium point are

denoted with ∆, so that ∆pi represents a small perturbation in pi. Linearized

dynamics are obtained by taking the Taylor series expansion of the dynamics

around the equilibrium point and keeping only the first two terms. The higher

order terms are ignored.

˙̂pi = ṗi = f1(p̂i, p̂j, βi, βj) = 2Aiipi + Aijpj + bi + (1− βi)Aij p̂j + βjAjipj

= f1(q) +
∂f1
∂pi

∣∣∣∣
q

∆p̂i +
∂f1
∂pj

∣∣∣∣
q

∆p̂j +
∂f1
∂βi

∣∣∣∣
q

∆βi +
∂f1
∂βj

∣∣∣∣
q

∆βj + higher order terms

β̇i = f2(p̂i, p̂j, βi, βj) = −Aij p̂jpi + (1− βi)Aijpi
Aijpi
−2Ajj

= f2(q) +
∂f2
∂pi

∣∣∣∣
q

∆p̂i +
∂f2
∂pj

∣∣∣∣
q

∆p̂j +
∂f2
∂βi

∣∣∣∣
q

∆βi +
∂f2
∂βj

∣∣∣∣
q

∆βj + higher order terms

(3.19)

The linearized system then becomes

∆̇p̂

∆̇β

 = L

∆p̂

∆β



L =



2Aii (1− βcei )Aij + βcej Aji −Aij p̂cej Ajip
ce
j

(1− βcej )Aji + βcei Aij 2Ajj Aijp
ce
i −Ajip̂cei

−p̂cej Aij +
2(1−βce

i )A2
ijp

ce
i

−2Ajj
−Aijpcei

(Aijp
ce
i )2

2Ajj
0

−Ajipcej −p̂cei Aji +
2(1−βce

j )A2
jip

ce
j

−2Aii
0

(Ajip
ce
j )2

2Aii



(3.20)

Note that L31 and L42 can be rewritten by substituting in βcei =
2Ajj p̂

ce
j

Aijpcei
+ 1 and

βcej =
2Aiip̂

ce
i

Ajipcej
+ 1, and algebraically simplifying. This results in the a simplified A
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matrix.

L =



2Aii (1− βcei )Aij + βcej Aji −Aij p̂cej Ajip
ce
j

(1− βcej )Aji + βcei Aij 2Ajj Aijp
ce
i −Ajip̂cei

Aij p̂
ce
j −Aijpcei

(Aijp
ce
i )2

2Ajj
0

−Ajipcej Ajip̂
ce
i 0

(Ajip
ce
j )2

2Aii


. (3.21)

Lemmas concerning numerical range can be leveraged to show that the linearized

system is stable. ForA ∈ Cn×n, numerical range is denotedW (A) = {x∗Ax | ||x||2 =

1}, and the spectrum of A is denoted σ(A). From [7],

Lemma 3.6. For complex valued square matrices A and B:

1. W (A) is compact and convex.

2. σ(A) ⊂ W (A).

3. W (A+B) ⊂ W (A) +W (B).

Lemma 3.7. Given L in (3.20), the matrix decomposes to L = B + C where B

is

B =



2Aii (1− βcei )Aij + βcej Aji 0 0

(1− βcej )Aji + βcei Aij 2Ajj 0 0

0 0
(Aijp

ce
i )2

2Ajj
0

0 0 0
(Ajip

ce
j )2

2Aii


(3.22)

and C is

C =



0 0 −Aij p̂cej Ajip
ce
j

0 0 Aijp
ce
i −Ajip̂cei

Aij p̂
ce
j −Aijpcei 0 0

−Ajipcej Ajip̂
ce
i 0 0


(3.23)
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Lemma 3.8. Given B in (3.22) and an admissible linear demand function q(p) =

Ax+ b, maxRe(W (B)) < 0.

Proof. The proof proceeds by showing that B is negative definite. Note that

due to the restrictions on A imposed by the assertion that q(p) is admissible

and the fact that any β value must be between 0 and 1, B is diagonally dominant.

Furthermore, all diagonal entries are negative, which indicates that B is a negative

definite matrix.

Lemma 3.9. Given C in (3.23), Re (W (C)) = 0.

Proof. Algebraically, the real part of numerical range x∗Cx for the matrix is

Re (x∗Cx) = Re (−Aij p̂cej x3x∗1 + Ajip
ce
j x4x

∗
1 + Aijp

ce
i x3x

∗
2 − Ajip̂cei x4x∗2

+ Aij p̂
ce
j x1x

∗
3 − Ajipcej x1x∗4 − Aijpcei x2x∗3 + Ajip̂

ce
i x4x

∗
2)

= Re (x3x
∗
1)(−Aij p̂cej + Aij p̂

ce
j ) + Re (x4x

∗
1)(Ajip

ce
j − Ajipcej )

+ Re (x3x
∗
2)(Aijp

ce
i − Aijpcei ) + Re (x4x

∗
2)(−Ajip̂cei + Ajip̂

ce
i )

= 0

(3.24)

Theorem 3.10. Given an admissible linear demand function, any equilibrium of

the system with side payments given by (3.19) is locally stable.

Proof. The proof proceeds using a numerical range argument similar to that used

in [4] and [3]. From lemma (3.7), the dynamics matrix for the linearized system

can be rewritten as L = B + C. From lemma (3.6), W (L) = W (B + C) ⊂

(W (B) ∪W (C)). Therefore,

maxRe(W (L)) ≤ maxRe(W (B)) +maxRe(W (C))
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From lemmas (3.8) (3.9), Re(W (B)) < 0 and Re(W (C)) = 0. Therefore,

maxRe(W (L)) < 0,

and applying lemma (3.6),

maxRe(σ(L)) ≤ maxRe(W (L)) < 0

.

Thus any equilibrium of the system is locally stable. This, however, presents

two pressing questions. Firstly, where are those equilibria, and secondly, what

is basin of attraction for each? These are important questions because although

we have shown properties of equilibria generically, we have yet to prove that any

equilibrium exists. Furthermore, this analysis does not preclude the existence of

an equilibrium in which the value of either β is not in the required range.

3.3 Numerical Examples

This issue has proven to be a particularly difficult nut to crack. However, multiple

numerical examples all show the existence of a reasonable equilibrium with a basin

of attraction that appears to cover all sensible initial conditions. To prove this

point, several numerical examples are provided. For each example, the system

was simulated from six-hundred twenty-five distinct initial conditions distributed

evenly throughout the space of reasonable initial conditions.
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3.3.1 Numerical Example 1 (Complements)

Consider a system defined by the following admissible linear demand function:

q(p) =

−3 −2

−1 −3


p1
p2

+

6

6

 . (3.25)

The results of simulating this system with non-cooperative, perfectly cooperative,

and dynamic coalition formation dynamics are shown in the table below.

Dynamics p̄1($) p̂1($) p1($) p̄2($) p̂2($) p2($) β1 β2 v1($) v2($) w($)

Non-Cooperative 0.71 0 0.71 0.88 0 0.88 0 0 1.49 2.34 3.83

Perfectly Cooperative 0.71 -0.04 0.67 0.88 -0.21 0.67 0 0 1.78 2.22 4.00

Dynamic Coalition 0.71 -0.05 0.66 0.88 -0.11 0.78 0.50 0.50 1.58 2.39 3.97

Table 3.1: System variables at equilibrium for a two firm market selling com-
plementary goods

As expected, the total producer surplus under dynamic coalition dynamics is much

closer than producer surplus under non-cooperative dynamics to the maximum

producer surplus. Although perfect cooperation generates higher producer surplus,

it is distributed in such a way that the second firm is better off not cooperating.

Instead, the second firm would likely defect. Under dynamic coalition dynamics

however, both firms are better off. Also, the equilibrium point found by simulating

the system is reasonable, as both β’s are between 0 and 1 and prices are positive.
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3.3.2 Numerical Example 2 (Substitutes)

Consider the same function given in Example 1, but with substitute rather than

complementary goods:

q(p) =

−3 2

1 −3


p1
p2

+

6

6

 . (3.26)

The results of simulating this system with non-cooperative, perfectly cooperative,

and dynamic coalition formation dynamics are shown in the table below.

Dynamics p̄1($) p̂1($) p1($) p̄2($) p̂2($) p2($) β1 β2 v1($) v2($) w($)

Non-Cooperative 1.41 0 1.41 1.24 0 1.24 0 0 5.98 4.58 10.56

Perfectly Cooperative 1.41 0.59 2.00 1.24 0.76 2.00 0 0 8.00 4.00 12.00

Dynamic Coalition 1.41 0.15 1.56 1.24 0.27 1.50 0.48 0.41 6.43 4.90 11.33

Table 3.2: System variables at equilibrium for a two firm market selling sub-
stitute goods

The table shows similar trends with regards to individual profits and social welfare

as described in Example 1. This example serves to show the difference between

cooperation between firms selling complementary and substitute goods. Note that

total profits are much higher, and consequently, price shifts more dramatic. Also,

as in the previous example, price shifts are of the same sign as the corresponding

value in the A matrix, that is sign(Aij) = sign(p̂j). This indicates that at equilib-

rium, both firms have deviated from their non-cooperative prices in a way which

benefits the other firm. This proved to be the case in all simulations.
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3.4 Conclusion

This chapter has presented an altered representation of the market used in the

gradient play differential game representing cooperation in a competitive envi-

ronment. This change facilitates reasoning about revenues with respect to the

revenues at the NCE and explicitly represents side payments. The specific set of

dynamics for the evolution of price and side payments presented was shown to

result in natural coalition at equilibrium, and the local stability of any equilib-

rium was proven. Although proofs of existence of a reasonable equilibrium, many

simulations show that it does in fact exist and that its basin of attraction covers

all reasonable initial conditions.



Chapter 4

Conclusion and Future Work

This work introduced a gradient play differential game played in a producer market

as a model for behavior in a competitive environment. The idea of cooperation

in this framework was introduced, aided by definitions of coalitions and natural

coalitions. Chapter 2 showed that existing representation of cooperation within

this framework produce coalitions but do not guarantee that these coalitions are

natural. Chapter 3 presented system dynamics which induce natural coalitions

in a two firm market. Mathematical proofs show that, given an admissible linear

demand function, any equilibrium of the system is locally stable and that any

equilibrium results in both firms being at least as well of as they would be acting

independently. Furthermore, if the demand function demonstrates cross elasticity

of demand, then cooperation in the form of side payments always occurs and both

firms are guaranteed to be strictly better off. Although empirical evidence suggests

it is true, proving mathematically the existence of an admissible equilibrium with

a region of attraction that includes all admissible initial conditions remains a

pressing problem. Also, these dynamics should be generalized to cover not just

two-firm markets but markets with any number of firms.

The dynamics presented here are not the only possible dynamics which would

cause the system to behave as desired, and throughout the research process, slight

33
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variations were shown to behave in similar ways. Importantly, different dynam-

ics appear to lead to different distribution at equilibrium. Understanding the

distribution bias a set of dynamics implies in a structured way is an important

future step towards building appropriate models of cooperation as well as inducing

cooperation in otherwise non-cooperative environments.
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