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Abstract— This paper reports early success in using systems
theoretic approaches to develop a real-time interpreter for
honeybee communication. Foraging Western honeybees share
location information of prime food sources through a particular
dance. In this work we develop algorithms that translate
time-series data of the dancing bees’ locations into parameter
estimates of the relevant food sources. The resulting system
becomes a component in a future ecological sensor, WaggleChat,
for deeper research into bee communication, demonstration
of social insect communication to a broad audience, and a
first step toward a new, closed-loop approach to pollination
control for both agriculture and broader ecological man-
agement. Code, models, and more details are available at:
https://gitlab.com/idealabs/hb-comm-interpreter.

I. INTRODUCTION

Sensors are a control system’s window to the world. As
such, the development of novel sensors enables the applica-
tion of control systems in new and more varied scenarios.
The aim of this paper is to establish the foundations for
ecological sensors to visually interpret the communication
of honeybees within their hives in real time.

Forager Western honeybees, Apis mellifera, are able to
communicate information to the colony about sources of
nectar, pollen, water, or even new potential nest locations.
They do this via a progression of cyclic movements known
as the “waggle dance.” The interpretation of this dance
was established by ethologist Karl von Frisch in 1946 [1],
leading to his winning the Nobel Prize in Physiology or
Medicine in 1973, along with Konrad Lorenz and Nikolaas
Tinbergen “for their discoveries concerning organization and
elicitation of individual and social behaviour patterns” [2].
This work enabled researchers to interpret manually observed
dances within observation hives, giving valuable insight into
the health of both honeybee colonies and the surrounding
environments which they pollinate.

What’s more, the work of von Frisch stands as one of
the most important milestones to date with regards to under-
standing non-primate communication and the rich ecological
information network it represents [3]. Often such commu-
nication is chemical, making it more difficult to sense, but
in some cases, like the waggle dance of Apis mellifera, the
communication has a behavioral component that is amenable
to visual sensors, provided appropriate signal processing can
be developed to properly interpret the behavior patterns.
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The aim of this work is to build upon the findings of von
Frisch and his successors (see Related Work) to construct
a sensor, including the necessary signal processing, for
interpreting these waggle dances in real time. Such sensors
will then enable a whole new class of ecological control
systems relating to honeybee colonies.

A. Motivation

Pollinators perform an ecological function that is essential
to the survival of all of Earth’s terrestrial ecosystems. Of the
1,400 plant species cultivated worldwide for food and indus-
try, nearly 80% require pollination by animals [4], including
bees, butterflies, hummingbirds, etc. In some locations of
the world, decreased local pollinator populations have forced
human workers to pollinate fields by hand [5]. Estimates
find the contribution of managed honeybee pollination to
agricultural production to be between US$28.0-122.8 million
dollars, and the contribution of wild pollinators to be between
US$49.1-310.9 million dollars [6]. Improving current agri-
cultural practices surrounding honeybees becomes increas-
ingly important as the world witnesses the steady population
decline of these remarkable insects [7].

Imagine that a sensor of the type we are attempting to con-
struct is integrated into the honeybee hives of an industrial
farm. The farm management team could utilize the tool to
understand where the honeybees are pollinating, which food
sources the honeybees consider to be better than others, and
which areas of the farm the honeybees may be avoiding–and
therefore not pollinating. As a result, the farm management
team could then investigate these less-pollinated areas to
discern whether action may be taken to encourage pollination
in this area: pesticide use may be too high in that area of the
farm; or perhaps honeybee predators, such as wasps, may
have infected the area. Thus, the sensor provides feedback
in the manual “human-in-the-loop” control loop between
the farm biosphere and the farmer. An ecologist studying
a specific environment may find such a sensor useful for the
same purposes: the study and causes of pollination inefficacy.

The sensor may also be incorporated into a future auto-
mated control device, one that discerns where honeybees are
pollinating using the sensor and then encourages honeybees
to pollinate in areas that have yet to be pollinated through
mechanical or olfactory means (potential work in this area
is described in Related Work). Such a control device could
be implemented on an industrial farm to improve pollina-
tion efforts, or by researchers to gain deeper insights into
communication patterns among eusocial insects.
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(a) The run angle θ, the run starting time t0, and the
run finishing time tf of a honeybee waggle dance.

(b) The angle to the food source θ with respect to the
sun and the distance to the food source, r.

Fig. 1. The angle to the food source with respect to the sun, with the hive at the vertex, is equivalent to the angle, θ, of the waggle run; the distance to
the food source, r, is a linear function of the run duration, τ = tf − t0 [8].

B. Related Works

Couvillon presented a summary of von Frisch’s findings
and advancements in the study of honeybee waggle dance
communication through 2011 [9]. In 2012, Couvillon et al.
established protocols for the efficient decoding of the waggle
dance [10].

A German company apic.ai, founded in 2018, is an
industry leader in the development of electronic honeybee
monitors. They produce sensors that monitor the entrance and
exit of honeybees and bumblebees from a hive, the number
and share of bees carrying pollen, the diversity of pollen
carried by bees into the hive, the mortality rate of the hive,
among other indicators. They published their findings on
the large-scale monitoring of beehives, naming their system
DeepBees [11].

In recent years, the development of computer vision
technology has enabled the construction of several auto-
mated waggle dance interpretation systems. Wario et al.
[12] developed a system BeesBook that monitors honey-
bees over extended periods of time and provides real-time
interpretations of the waggle dances present; however, the
BeesBook system requires black-and-white markers to be
placed on the honeybees in order for the computer vision
system to track them. In 2017, Wario et al. published
an improvement on their previous system, a new system
“capable of automatically detecting, decoding and mapping
communication dances in real-time” [13]; this work, although
adopting different techniques, is most similar to that reported
here. In 2021, a combined team from the Okinawa Institute
of Science and Technology Graduate University and the
Australian National University published a method for the
markerless tracking of all individuals in a bee colony with
some post-processing required [14]; these results are accurate

but are not real-time.
Landgraf et al. developed a mechanical bee, named

RoboBee, that performed the waggle dance and “elicited nat-
ural dance-following behavior in live bees”; through tracking
the flight of bees in that colony, the team was able to confirm
that the bees used the information encoded in the robotic
waggle dance to locate food sources [15]. Such a tool, in
combination with a sensor such as the one reported here,
could be used for the construction of a complete automatic
control loop that improves pollination efficacy in a given
environment.

II. BACKGROUND ON HONEYBEE COMMUNICATION:
THE WAGGLE DANCE

Upon discovering a food source that is farther than 100
meters from its resident hive, a forager honeybee will begin
a cyclic “waggle” dance that follows the following form [8]:
(see Fig. 1a)

1) The forager bee walks in one direction along a linear
path, “waggling” its abdomen from side to side as it
progresses along this path. (This portion of the dance
is referred to in the literature as the run or waggle run.)

2) The forager then turns either to the left or to the right,
circling around to return to the start of the waggle run.
(This portion of the dance is referred to as the return.)

3) The forager repeats the waggle run with the next return
being to the opposite side.

This dance is repeated anywhere from one to more than
a hundred times, alternating between a right and left return
after each run [9]. Surrounding forager bees hug close to the
dancing forager bee in order to feel out the pattern of the
bee’s dance [8].

As stated previously, Karl von Frisch discovered that this
dance encodes geographical information about the location
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and quality of an identified food source [1] (see Fig. 1b).
When the waggle dance is performed on a vertical surface
(e.g., inside a vertically situated hive), the angle from the
top (upwards) of the hive to the linear path of the waggle
run is equal to the angle from the sun to the located food
source with the hive being the vertex of this angle; the
duration of the waggle has a linear relationship with the
distance from the hive to the located food source; and the
“liveliness” (a vague and yet to be officially standardized
measurement that describes the vigor and excitement of the
bee’s waggling vibrations along the run) of the dance has
a positive linear relationship with the profitability of the
food source–which includes factors such as the source’s
sweetness, purity, viscosity, fragrance, and ease of access
[8].

Thus, when a forager bee locates a food source and returns
to the hive, its waggle dance signals a communication vector
υ(t) to the surrounding bees, defined as follows:

υ(t) =
[
θ(t) r q

]T
, (1)

where θ(t) is the angle to the located food source with
respect to the location of the sun at time t; r is the distance
to the food source in kilometers; and q is a profitability-of-
food-source coefficient.

Furthermore, r can be approximately expressed as

r ≈ ξ0 + ξ1τ, (2)

where ξ0 and ξ1 are fit coefficients, and τ = tf − t0 is the
duration of the run in the forager bee’s waggle dance. Using
the data presented by Karl von Frisch [8], L2-regression
yields values ξ0 = −0.0562 and ξ1 = 1.245 for Eq. 2.

Surrounding honeybees following one of their sister’s
dances compensate for errors in the dance by averaging the
run direction and duration across multiple runs [16]. The
number of runs averaged by the sister bees may vary, but in
this work we follow the protocol established in [10].

III. PROBLEM FORMULATION

Given a video of vertically positioned honeybee comb, we
aim to extract the dance communication vectors υ1, . . . , υc
of the c waggle dances being performed by honeybees on
the comb within the video. We decompose this problem into
four subproblems:

1) identification of a honeybee performing the waggle
dance;

2) tracking of that dancing honeybee across the video;
3) classification of the honeybee’s locations over time as

being on the waggle run or the return; and
4) estimation of the dance angle and duration.

A. Identification of a Dancing Bee

First, given a video–a sequence of images I0, . . . , In–of
vertically positioned honeybee comb, we want to identify a
honeybee performing the waggle dance out of the set of all
bees B on the comb surface present in the images I0, . . . , In.

This task will be addressed in a future paper. For now,
we assume that a dancing honeybee has been identified in

the video and that its horizontal and vertical location (in
pixels) x0 ∈ R2 in image I0 has been identified as part of
pre-processing.

B. Tracking a Dancing Bee

Given the identified dancing honeybee and its location
x0 ∈ R2 in the first image I0, we want to identify the
subsequent locations xk ∈ R2, k = 1, . . . , n of the honeybee
in each image Ik, k = 1, . . . , n, respectively. The problem
here is to map from video data to quantified position data.

For the purposes of this paper, we utilized hand-annotated
locations of dancing bees from 25 different videos pulled
from YouTube. However, it is important to note that Bozek
et al. [14] have developed a machine learning method for
the markerless tracking of individual honeybees, albeit with
some post-processing time required.

C. Real-Time Classification of the Waggle Run

Given each location xk, k = 0, . . . , n of the danc-
ing bee over time, we want to identify the function
yk = g (x0, . . . , xk, . . . , xn) ∈ {0, 1} that maps the locations
(x0, . . . , xn) of the dancing bee to the classification of point
xk as being on either the waggle run (labeled yk = 1) or the
return (yk = 0). Our solution to this subproblem is presented
in Section IV.

D. Real-Time Estimation of the Run Angle and Duration

Given each location xk, k = 0, . . . , n of the dancing bee
over time and the respective classifications yk, k = 0, . . . , n
of those locations, we want to:

1) identify all waggle runs R1, . . . , Rω–sequences of lo-
cations xk that are all classified as yk = 1;

2) extract the angles θ1, . . . , θω of each of these waggle
runs; and

3) compute the duration τ1, . . . , τω (in seconds) of each
of these waggle runs.

By solving the above problem, we are extracting infor-
mation that encodes the angle θ and distance r of the
dance communication vector υ for the dance performed by
honeybee. Our solution to this subproblem is presented in
the Section IV. In this work we will not attempt to estimate
the third element, the profitability-of-food-source coefficient,
q, since there is no unified view in the literature about how
to quantify the “profitability” of a food source to include
sweetness, purity, viscosity, fragrance, ease of access, etc.
[17], [18], [9]; we leave that to future work.

IV. SOLUTIONS

A. Real-Time Classification of the Waggle Run

To classify each location xk as being on either the waggle
run (labeled y = 1) or the return (y = 0), we defined
two features d̄k (mean consecutive distance) and ᾱk (mean
consecutive supplementary angle) to be used in a Logistic
Regression algorithm. The mean consecutive distance d̄k for
time step k is given by
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d̄k =
1

6

k+3∑
j=k−2

dj , (3)

where
dk =

1

ĥ
· ∥xk − xk−1∥2 , (4)

and ĥ is the mean length of a honeybee (in pixels) in the
video (measured in a pre-processing and calibration step).
The mean consecutive supplementary angle ᾱk for time step
t = k is given by

ᾱk =
1

5

k+2∑
j=k−2

αj , (5)

where

αk =
1

π
·arccos

(
1
ĥ
· ∥xk+1 − xk−1∥22 − d2k+1 − d2k

2 · dk+1 · dk

)
. (6)

The Logistic Regression algorithm, after being fit to pre-
labeled data points (part of the pre-processing and calibration
step), then produces the following classifier for the waggle
run and return:

ŷk =

⌊(
1

1 + e−AT
k β̂

)
+

1

2

⌋
∈ {0, 1} , (7)

where A =
[
1 d̄k ᾱk d̄k · ᾱk

]T ∈ R4 is the input
data, including the mean consecutive distance, mean
consecutive supplementary angle, and their interaction;
and β̂ ∈ R4 are their respective coefficients. Using
videos with a frame rate of between 24-30 fps, we
pre-fit the coefficients using L2-regression to get β̂ =[
−7.38618922 10.67163016 9.50486566 6.89406401

]T
.

Due to the dependency of the classification ŷk of location
xk on previous points xk−3, . . . , xk−1 and future points
xk+1, . . . , xk+3, the classification algorithm will not classify
the first three points x0, x1, x2 and the last three points
xn−2, xn−1, xn in a video.

Smoothing Operator for Classified Points: Because waggle
runs and returns only occur in longish sequences, we can
employ a smoothing operator to correct any small windows
of points that are misclassified. That is, points clump together
in runs and returns, so any spurious run-points in the middle
of a return sequence, or vice versa, can be corrected with
appropriate smoothing.

We begin by deciding the maximal sequence length, lmax,
that we think might be spurious. We will then use the data
surrounding sequences of these lengths to decide whether to
reclassify them or not. In this work we consider sequences
up to length lmax = 8 on data collected at 24-30 fps
as being potentially spurious. With lmax defined, we then
iterate through the data considering sequences of length l =
1, 2, ..., lmax, and with a clever software implementation the
operations for different lengthed sequences can be designed
to work with only one pass through the data.

To correct for sequences of l ≤ lmax, we simply consider
the l+1 points prior to the sequence (i.e. the presequence),
and the l+1 points immediately following the sequence (i.e.
the postsequence), and assign all l points of the sequence to
be the most common value in the pre-and-post sequences.
So, for example, if we are considering a sequence of five
ones (where one indicates points along a waggle run), we
look at the presequence of six points and the postsequence
of six points and see what value is most common. If these
twelve points are mostly zeros (indicating points on a return
path, not a waggle run), then we flip the value of the five
points in the sequence from one to zero and assume that they
were misclassified.

B. Real-Time Estimation of the Run Angle and Duration

A series of ρ consecutive points xj , . . . , xj+ρ−1 that are
all classified as on the waggle run (ŷj , . . . , ŷj+ρ−1 = 1) can
be considered a collection of points that is a single waggle
run R. We collect and store each of the runs R1, . . . , Rω that
occur throughout the video.

For each run Ri, we then use total least
squares to fit a straight line to the midpoints
xj+1+xj

2 ,
xj+2+xj+1

2 , . . . ,
xj+ρ−1+xj+ρ−2

2 of each consecutive
pair of points in the run. (Fitting the line to the midpoints
removes the “waggling” portion of the signal, allowing us
to better follow the bee’s linear path of travel; the efficacy
of this approach, as opposed to simply fitting the line to the
original locations xk, is demonstrated in Fig. 2.) We then
determine the direction of the bee’s travel by extracting the
projections ν1 and νρ of the first midpoint xj+1+xj

2 and last
midpoint xj+ρ−1+xj+ρ−2

2 onto the fitted line. The angle of
the waggle run θ̂i is then computed as follows:

θ̂i = −(atan2(νρ − ν1)− 90) (8)

At this stage we also calculate the duration τ̂i of each
sequence. This is calculated as

τ̂i =
ρi
f

(9)

where ρi is the duration of waggle run Ri (in frames), and
f is the frame rate of the overall image sequence I0, . . . , In
(in fps).

In accordance with the protocols established by Couvillon
et al. [10] for efficiently decoding honeybee waggle dances,
we take the mean of an even number ω̃ mod 2 = 0 of the
ω computed run angles θ̂1, . . . , θ̂ω to produce an estimated
angle θ̂ to the food source. (The last run is included or
excluded to ensure that the mean is taken across an even
number of runs.) Runs with much shorter run durations
(outliers) are also excluded. Similarly, we take the mean τ̄ of
the run durations τ̂1, . . . , τ̂ω̃ to then produce the estimated
distance r̂ = −0.562 + 1.245τ̄ to the food source, where,
as we described in Section II, the coefficients −0.562 and
1.245 were calculated from Dr. von Frisch’s interpretation of
his original data.
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Fig. 2. Data from 16 of 124 total waggle runs annotated for this study. (Human annotated) position data is reflected as orange circles connected by blue
lines, showing how the points follow each other in sequence. Green triangles indicate midpoints between consecutive pairs of data points, and the green
solid line is the best total-least-squares fit to the midpoint data. Compare this to the orange dashed line, which is the total least squares fit or first principal
component of the raw position data, which sometimes can go drastically awry.

(a) Histogram of the error between the estimated angle of the
124 waggle runs and the human annotated ground truth angle.
The vertical dashed red line indicates the mean error of 1.555
degrees and a standard deviation of 15.902.

(b) Since many waggle runs are repeats of the same forager
bee trying to communicate the same information in a single
waggle dance, this histogram reveals the distribution of error in
angle estimation when runs from the same dance are averaged
together. Notice the smaller spread in the error distribution.

Fig. 3. Error distribution of estimated angle using data classified as ”run” data by human annotation, comparing to human annotated angle, and using
human annotated position data to drive the estimation algorithm.
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(a) Error distribution of estimated angle from waggle runs
averaged over runs from the same waggle dance. Compare
with Figure 3b, which used human classification instead of
algorithmic classification. As with the other histograms in
Figures 3 and 4, the vertical red dashed line indicates the mean
of the distribution.

(b) Error distribution of duration from waggle runs averaged
over runs from the same waggle dance. Since duration effec-
tively subtracts the timestamp of the first data point from that
of the last data point labeled as “run” data, this distribution
essentially is another view of the classification error of our
logistic regression and smoothing algorithm.

Fig. 4. Error distribution of estimated angle using data classified as ”run” data by logistic regression, comparing to human annotated angle, and using
human annotated position data to drive the estimation algorithm.

V. RESULTS AND DISCUSSION

We have divided our results into three sections:
1) an independent analysis of the quality of our classifi-

cation algorithm on 25 different labeled waggle dance
videos pulled from YouTube;

2) an independent analysis of the quality of our estimation
algorithm on the same 25 dances; and

3) a combined analysis of the classification and estimation
algorithm working in tandem on the same 25 dances.

A. Real-Time Classification of the Waggle Run

When run on hand-annotated locations xk from the 25
videos of waggle dances pulled from YouTube, the Logistic
Regression classifier achieved a classification accuracy of
93.00%. The smoothing operator boosted this classification
accuracy to 95.39%.

B. Real-Time Estimation of the Run Angle

When run on hand-annotated locations xk and classifica-
tion labels yk from the pulled YouTube data, our estimation
algorithm has an average error of 1.555◦ with a standard
deviation σ = 15.902 for the angle θ̂i of each waggle run Ri

(the error distribution is pictured in Fig. 3a). However, when
we average the estimated run angles θ̂i, i = 1, . . . , ω across
the entire dance, then the error in our estimate for the dance
angle θ̂ reduces to 0.532◦ with a reduced standard deviation
σ = 7.015 (distribution pictured in Fig. 3b). Thus, although
there may be higher variation and bias in the estimates
from run to run, the algorithm is much more accurate when
extracting information for an entire dance.

C. Combined Classification and Estimation

When the classification algorithm and the estimation algo-
rithm are run sequentially, with the hand-annotated locations
xk pulled from the YouTube data fed into the classifier and
the output classifications ŷk fed into the estimator, the mean

error in our estimated angle θ̂ for each waggle dance is
0.308◦ with a standard deviation σ = 8.797 (the distribution
of dance angle error is pictured in Fig. 4a). Thus, the
classifier and estimator together perform with slightly less
bias and only slightly greater variance than the estimator
alone on hand-labeled classifications. Similarly, the error in
our estimated waggle duration τ̂ for each waggle dance is
0.047 seconds with a standard deviation σ = 0.169 (the
distribution of dance duration error is pictured in Fig. 4b).

VI. CONCLUSIONS AND FUTURE WORK

This paper describes the problem of automating the extrac-
tion of information communicated by a honeybee engaged
in a waggle dance. We identified four subproblems: 1)
identifying a dancing bee, 2) tracking a dancing bee, 3)
classifying position data from the bee as either part of the
waggle “run” or “return,” and 4) estimating the run angle
and duration. In this paper we ignored the first and second
subproblems, assuming they had already been solved (a
solution for the second subproblem requiring some post-
processing time has been reported in the literature [14]). We
then focused on solving the third and fourth subproblems,
classification and estimation, and demonstrated on data from
124 waggle runs the efficacy of our solutions. These results
lay the foundation for development of ecological sensors for
real-time interpretation of honeybee communication.

This work is part of our larger research effort solving all
four subproblems and using the resulting ecological sensors
for pollination control. To work on these problems, we’ve
developed an experimental platform consisting of the setup
shown in Fig. 5. Located within the Brigham Young Univer-
sity Life Science Greenhouses, we set up an observation hive
during the summer of 2021 and relocated a colony of Italian
Western honeybees (Apis mellifera ligustica) into the hive.
We also purchased two Logitech StreamCam Plus cameras
and a custom-built computer with an RTX 3090 GPU and
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(a) Photograph (b) Front View (c) Side View

Fig. 5. The observation hive and camera-computer system setup at the Brigham Young University Life Science Greenhouses.

Ryzen 9 5900X CPU. Our goal is to have a fully constructed
honeybee dance interpreter, named WaggleChat, that works
in real time by fall of 2022. To accomplish this, we will be
expanding on the work achieved by Wario et al. [13], Bozek
et al. [14], and Marstaller, Tausch, and Stock [11] to create
a real-time markerless tracking system to track honeybees.
We will then apply the algorithms presented in this paper to
automatically decode any waggle dances that occur. A live
view of the bottom frames of the observation hive provided
by the cameras (see Figs. 5b, 5c) can be accessed via the
following link: bees.byu.edu.
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